高泛音体腔中自旋波的全声激发

IF 1.3 Q3 ACOUSTICS Acoustics (Basel, Switzerland) Pub Date : 2023-03-01 DOI:10.3390/acoustics5010016
S. Alekseev, N. Polzikova, V. Luzanov
{"title":"高泛音体腔中自旋波的全声激发","authors":"S. Alekseev, N. Polzikova, V. Luzanov","doi":"10.3390/acoustics5010016","DOIUrl":null,"url":null,"abstract":"The hybrid high overtone bulk acoustic wave resonators (HBARs) consisting of a piezoelectric film transducers and gallium gadolinium garnet substrates with yttrium iron garnet films (YIG-GGG-YIG) are used for experimental excitation and detection of acoustically driven spin waves (ADSWs). Two types of HBAR transducers made of Al-ZnO-Al films (differed through the electrodes’ geometry) were deposited onto YIG-GGG-YIG trilayers with different YIG film thicknesses and doping levels and served for excitation of multimode HBAR at gigahertz frequencies. ADSWs were detected by measuring the shifts of resonant HBAR modes in a tangential external magnetic field when the conditions for magnetoelastic resonance (MER) were satisfied. It was shown that the design of the transducer with a continuous bottom electrode provides all acoustical excitation of spin waves (pure ADSWs), suppressing the additional inductive magnetic dynamics excitation due to the electrodes’ geometry. The theoretical study of the HBAR spectrum in a magnetic field showed that the resonance harmonics in the MER region can either almost continuously transfer from one to another, or decay and form an evident magnetoelastic gap. In this case, the shift of resonant frequencies can achieve several intermodal distances. The results obtained are important for applications of HBAR-based devices in spintronics and magnonics.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"All Acoustical Excitation of Spin Waves in High Overtone Bulk Acoustic Resonator\",\"authors\":\"S. Alekseev, N. Polzikova, V. Luzanov\",\"doi\":\"10.3390/acoustics5010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hybrid high overtone bulk acoustic wave resonators (HBARs) consisting of a piezoelectric film transducers and gallium gadolinium garnet substrates with yttrium iron garnet films (YIG-GGG-YIG) are used for experimental excitation and detection of acoustically driven spin waves (ADSWs). Two types of HBAR transducers made of Al-ZnO-Al films (differed through the electrodes’ geometry) were deposited onto YIG-GGG-YIG trilayers with different YIG film thicknesses and doping levels and served for excitation of multimode HBAR at gigahertz frequencies. ADSWs were detected by measuring the shifts of resonant HBAR modes in a tangential external magnetic field when the conditions for magnetoelastic resonance (MER) were satisfied. It was shown that the design of the transducer with a continuous bottom electrode provides all acoustical excitation of spin waves (pure ADSWs), suppressing the additional inductive magnetic dynamics excitation due to the electrodes’ geometry. The theoretical study of the HBAR spectrum in a magnetic field showed that the resonance harmonics in the MER region can either almost continuously transfer from one to another, or decay and form an evident magnetoelastic gap. In this case, the shift of resonant frequencies can achieve several intermodal distances. The results obtained are important for applications of HBAR-based devices in spintronics and magnonics.\",\"PeriodicalId\":72045,\"journal\":{\"name\":\"Acoustics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/acoustics5010016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics5010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

采用压电薄膜换能器和钇铁石榴石薄膜镓钆石榴石衬底(YIG-GGG-YIG)组成的混合高泛音体声波谐振器(hbar),用于声驱动自旋波(adsw)的实验激发和检测。将两种由Al-ZnO-Al薄膜制成的HBAR换能器(通过电极的几何形状不同)沉积在不同薄膜厚度和掺杂水平的YIG- ggg -YIG三层上,用于在千兆赫频率下激发多模HBAR。当满足磁弹性共振(MER)条件时,通过测量切向外磁场中谐振HBAR模式的位移来检测ADSWs。结果表明,采用连续底电极设计的换能器提供了自旋波的所有声激励(纯adsw),抑制了由于电极几何形状引起的附加感应磁动力学激励。磁场中HBAR谱的理论研究表明,MER区域的共振谐波可以几乎连续地相互传递,也可以衰减并形成明显的磁弹性间隙。在这种情况下,谐振频率的移位可以实现几个多模态距离。所得结果对基于hbar的器件在自旋电子学和磁学中的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All Acoustical Excitation of Spin Waves in High Overtone Bulk Acoustic Resonator
The hybrid high overtone bulk acoustic wave resonators (HBARs) consisting of a piezoelectric film transducers and gallium gadolinium garnet substrates with yttrium iron garnet films (YIG-GGG-YIG) are used for experimental excitation and detection of acoustically driven spin waves (ADSWs). Two types of HBAR transducers made of Al-ZnO-Al films (differed through the electrodes’ geometry) were deposited onto YIG-GGG-YIG trilayers with different YIG film thicknesses and doping levels and served for excitation of multimode HBAR at gigahertz frequencies. ADSWs were detected by measuring the shifts of resonant HBAR modes in a tangential external magnetic field when the conditions for magnetoelastic resonance (MER) were satisfied. It was shown that the design of the transducer with a continuous bottom electrode provides all acoustical excitation of spin waves (pure ADSWs), suppressing the additional inductive magnetic dynamics excitation due to the electrodes’ geometry. The theoretical study of the HBAR spectrum in a magnetic field showed that the resonance harmonics in the MER region can either almost continuously transfer from one to another, or decay and form an evident magnetoelastic gap. In this case, the shift of resonant frequencies can achieve several intermodal distances. The results obtained are important for applications of HBAR-based devices in spintronics and magnonics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps Importance of Noise Hygiene in Dairy Cattle Farming—A Review Finite Element–Boundary Element Acoustic Backscattering with Model Reduction of Surface Pressure Based on Coherent Clusters Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure Sound Environment during Dental Treatment in Relation to COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1