基于改进k -均值算法和最短时间机制的无人机群多目标分配狩猎策略

Q3 Engineering 西北工业大学学报 Pub Date : 2022-12-01 DOI:10.1051/jnwpu/20224061297
Bin Hu, Yahui Zhu, Zhize Du, Zixin Zhao, Yannian Zhou
{"title":"基于改进k -均值算法和最短时间机制的无人机群多目标分配狩猎策略","authors":"Bin Hu, Yahui Zhu, Zhize Du, Zixin Zhao, Yannian Zhou","doi":"10.1051/jnwpu/20224061297","DOIUrl":null,"url":null,"abstract":"Multi-target hunting of UAV swarm is an important tactical means. This paper proposes a hunting strategy based on improved K-means and the shortest time mechanism. The large-scale task assignment problem is complex in structure and difficult to solve. To obtain higher hunting efficiency and reduce the amount of calculation on the single UAV, the hybrid architecture is used to decompose the complex multi-target hunting problem into a set of tasks that the UAV need to perform, which reduces the coupling of the system and the complexity of problem. Firstly, the multi-target hunting problem is stratified by the improved K-means algorithm to form multiple independent single target hunting subsystems. In the subsystem, the single target hunting task is decomposed into multiple subtasks that are easy to be executed by UAVs, and a one-to-one matching relationship between subtasks and UAVs is established by using the shortest time mechanism. UAV swarm can achieve multi-target hunting only by executing subtasks. The simulation results show that the UAV swarm can effectively allocate the multi-target hunting problem, which proves the effectiveness of the allocation strategy is proved.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-target assignment hunting strategy of UAV swarm based on improved K-means algorithm and shortest time mechanism\",\"authors\":\"Bin Hu, Yahui Zhu, Zhize Du, Zixin Zhao, Yannian Zhou\",\"doi\":\"10.1051/jnwpu/20224061297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-target hunting of UAV swarm is an important tactical means. This paper proposes a hunting strategy based on improved K-means and the shortest time mechanism. The large-scale task assignment problem is complex in structure and difficult to solve. To obtain higher hunting efficiency and reduce the amount of calculation on the single UAV, the hybrid architecture is used to decompose the complex multi-target hunting problem into a set of tasks that the UAV need to perform, which reduces the coupling of the system and the complexity of problem. Firstly, the multi-target hunting problem is stratified by the improved K-means algorithm to form multiple independent single target hunting subsystems. In the subsystem, the single target hunting task is decomposed into multiple subtasks that are easy to be executed by UAVs, and a one-to-one matching relationship between subtasks and UAVs is established by using the shortest time mechanism. UAV swarm can achieve multi-target hunting only by executing subtasks. The simulation results show that the UAV swarm can effectively allocate the multi-target hunting problem, which proves the effectiveness of the allocation strategy is proved.\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20224061297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20224061297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

无人机群多目标狩猎是一种重要的战术手段。本文提出了一种基于改进的K-means和最短时间机制的狩猎策略。大规模任务分配问题结构复杂,求解难度大。为了获得更高的狩猎效率并减少对单个无人机的计算量,使用混合架构将复杂的多目标狩猎问题分解为无人机需要执行的一组任务,从而降低了系统的耦合性和问题的复杂性。首先,采用改进的K-means算法对多目标狩猎问题进行分层,形成多个独立的单目标狩猎子系统。在子系统中,将单个目标搜寻任务分解为多个子任务,这些子任务易于无人机执行,并利用最短时间机制建立子任务与无人机之间的一对一匹配关系。无人机机群只有通过执行子任务才能实现多目标狩猎。仿真结果表明,无人机机群能够有效地分配多目标狩猎问题,证明了该分配策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-target assignment hunting strategy of UAV swarm based on improved K-means algorithm and shortest time mechanism
Multi-target hunting of UAV swarm is an important tactical means. This paper proposes a hunting strategy based on improved K-means and the shortest time mechanism. The large-scale task assignment problem is complex in structure and difficult to solve. To obtain higher hunting efficiency and reduce the amount of calculation on the single UAV, the hybrid architecture is used to decompose the complex multi-target hunting problem into a set of tasks that the UAV need to perform, which reduces the coupling of the system and the complexity of problem. Firstly, the multi-target hunting problem is stratified by the improved K-means algorithm to form multiple independent single target hunting subsystems. In the subsystem, the single target hunting task is decomposed into multiple subtasks that are easy to be executed by UAVs, and a one-to-one matching relationship between subtasks and UAVs is established by using the shortest time mechanism. UAV swarm can achieve multi-target hunting only by executing subtasks. The simulation results show that the UAV swarm can effectively allocate the multi-target hunting problem, which proves the effectiveness of the allocation strategy is proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
期刊最新文献
Research on the safe separation corridor of the combined aircraft and its generation method Cracking mechanism analysis and experimental verification of encapsulated module under high low temperature cycle considering residual stress AFDX network equipment fault diagnosis technology MUSIC algorithm based on eigenvalue clustering Target recognition algorithm based on HRRP time-spectrogram feature and multi-scale asymmetric convolutional neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1