Zixuan Wang, Linhao Fan, Siyuan Wu, Chasen Tongsh, Yanyi Zhang, Zirong Yang, Qing Du, Dong Hao, Feikun Zhou, K. Jiao
{"title":"金属泡沫结构参数优化提高开阴极质子交换膜燃料电池性能的实验研究","authors":"Zixuan Wang, Linhao Fan, Siyuan Wu, Chasen Tongsh, Yanyi Zhang, Zirong Yang, Qing Du, Dong Hao, Feikun Zhou, K. Jiao","doi":"10.3389/fther.2022.900910","DOIUrl":null,"url":null,"abstract":"Using metal foam as a flow field structure is an attractive route to improve the performance of open-cathode PEMFC. Metal foam has shown great potential in improving the uniformity of reactants, but optimized structure parameters that can more effectively transfer gas and remove excess water are needed. Here we experimentally investigate the effect of metal foam structure parameters on cell performance using polarization curves, power density curves, and electrochemical impedance spectrum (EIS) measurements. By optimizing the pore density, thickness, and compression ratio of the metal foam, the performance of the fuel cell is improved by 49.8%, 42.1%, and 7.3%, respectively. The optimum structure value of metal foam is the pore density of 40 PPI, the thickness of 2.4 mm, and the compression ratio of 4:2.4. In this configuration, the cell could achieve a maximum power density of 0.485 W cm−2. The findings of this work are beneficial for the application of metal foams in open-cathode PEMFC.","PeriodicalId":73110,"journal":{"name":"Frontiers in thermal engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Optimization of Metal Foam Structural Parameters to Improve the Performance of Open-Cathode Proton Exchange Membrane Fuel Cell\",\"authors\":\"Zixuan Wang, Linhao Fan, Siyuan Wu, Chasen Tongsh, Yanyi Zhang, Zirong Yang, Qing Du, Dong Hao, Feikun Zhou, K. Jiao\",\"doi\":\"10.3389/fther.2022.900910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using metal foam as a flow field structure is an attractive route to improve the performance of open-cathode PEMFC. Metal foam has shown great potential in improving the uniformity of reactants, but optimized structure parameters that can more effectively transfer gas and remove excess water are needed. Here we experimentally investigate the effect of metal foam structure parameters on cell performance using polarization curves, power density curves, and electrochemical impedance spectrum (EIS) measurements. By optimizing the pore density, thickness, and compression ratio of the metal foam, the performance of the fuel cell is improved by 49.8%, 42.1%, and 7.3%, respectively. The optimum structure value of metal foam is the pore density of 40 PPI, the thickness of 2.4 mm, and the compression ratio of 4:2.4. In this configuration, the cell could achieve a maximum power density of 0.485 W cm−2. The findings of this work are beneficial for the application of metal foams in open-cathode PEMFC.\",\"PeriodicalId\":73110,\"journal\":{\"name\":\"Frontiers in thermal engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in thermal engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fther.2022.900910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in thermal engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fther.2022.900910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
使用金属泡沫作为流场结构是提高开阴极PEMFC性能的一条有吸引力的途径。金属泡沫在提高反应物的均匀性方面显示出巨大的潜力,但需要优化结构参数,以更有效地转移气体和去除多余的水。在这里,我们使用极化曲线、功率密度曲线和电化学阻抗谱(EIS)测量,实验研究了金属泡沫结构参数对电池性能的影响。通过优化金属泡沫的孔密度、厚度和压缩比,燃料电池的性能分别提高了49.8%、42.1%和7.3%。金属泡沫的最佳结构值是孔密度为40PPI,厚度为2.4mm,压缩比为4:2.4。在这种配置中,电池可以实现0.485 W cm−2的最大功率密度。这项工作的发现有利于金属泡沫在开阴极PEMFC中的应用。
Experimental Optimization of Metal Foam Structural Parameters to Improve the Performance of Open-Cathode Proton Exchange Membrane Fuel Cell
Using metal foam as a flow field structure is an attractive route to improve the performance of open-cathode PEMFC. Metal foam has shown great potential in improving the uniformity of reactants, but optimized structure parameters that can more effectively transfer gas and remove excess water are needed. Here we experimentally investigate the effect of metal foam structure parameters on cell performance using polarization curves, power density curves, and electrochemical impedance spectrum (EIS) measurements. By optimizing the pore density, thickness, and compression ratio of the metal foam, the performance of the fuel cell is improved by 49.8%, 42.1%, and 7.3%, respectively. The optimum structure value of metal foam is the pore density of 40 PPI, the thickness of 2.4 mm, and the compression ratio of 4:2.4. In this configuration, the cell could achieve a maximum power density of 0.485 W cm−2. The findings of this work are beneficial for the application of metal foams in open-cathode PEMFC.