低温储热相变材料的相容性及热可靠性研究

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2020-11-22 DOI:10.1007/s40243-020-00184-4
Jaya Krishna Devanuri, Uma Maheswararao Gaddala, Vikas Kumar
{"title":"低温储热相变材料的相容性及热可靠性研究","authors":"Jaya Krishna Devanuri,&nbsp;Uma Maheswararao Gaddala,&nbsp;Vikas Kumar","doi":"10.1007/s40243-020-00184-4","DOIUrl":null,"url":null,"abstract":"<p>Two of the important aspects for the successful utilization of phase change materials (PCMs) for thermal energy storage systems are compatibility with container materials and stability. Therefore, the present study is focused on testing the corrosion resistance and surface characteristics of metals in contact with PCMs and thermal behavior of PCMs with heating/cooling cycles. The PCM selection is made by targeting low temperature (&lt;100?°C) heat storage applications. The PCMs considered are paraffin wax, sodium acetate tri-hydrate, lauric acid, myristic acid, palmitic acid, and stearic acid. The metal specimens tested are aluminum, copper, and stainless steel because of their wide usage in thermal equipment. The tests are performed by the method of immersion corrosion test, and ASTM G1 standards are followed. The experiments are carried out at 80?°C and room temperature (30?°C) for the duration of 10, 30, and 60?days. Pertaining to thermal stability 1500 melting/freezing cycles are performed. Investigation has been carried out in terms of corrosion rate, SEM analysis of metal specimens, appearance of PCMs, and variation of thermophysical properties at 0th, 1000th, and 1500th thermal cycles. The most affected area of corrosion, including the dimension of pits, is presented, and comparison is made. Based on the corrosion experiments, recommendations are made for the metal–PCM pairs. Pure sodium acetate trihydrate is observed to suffer from phase segregation and supercooling. After 1500 thermal cycles, the variation in melting and freezing point temperatures for rest of the five PCMs are in the range of ??1.63 to 1.57?°C and ??4.01 to 2.66?°C. Whereas, reduction in latent heat of melting and freezing are in the range of 17.6–28.95% and 15.2–26.78%.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-020-00184-4","citationCount":"13","resultStr":"{\"title\":\"Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage\",\"authors\":\"Jaya Krishna Devanuri,&nbsp;Uma Maheswararao Gaddala,&nbsp;Vikas Kumar\",\"doi\":\"10.1007/s40243-020-00184-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two of the important aspects for the successful utilization of phase change materials (PCMs) for thermal energy storage systems are compatibility with container materials and stability. Therefore, the present study is focused on testing the corrosion resistance and surface characteristics of metals in contact with PCMs and thermal behavior of PCMs with heating/cooling cycles. The PCM selection is made by targeting low temperature (&lt;100?°C) heat storage applications. The PCMs considered are paraffin wax, sodium acetate tri-hydrate, lauric acid, myristic acid, palmitic acid, and stearic acid. The metal specimens tested are aluminum, copper, and stainless steel because of their wide usage in thermal equipment. The tests are performed by the method of immersion corrosion test, and ASTM G1 standards are followed. The experiments are carried out at 80?°C and room temperature (30?°C) for the duration of 10, 30, and 60?days. Pertaining to thermal stability 1500 melting/freezing cycles are performed. Investigation has been carried out in terms of corrosion rate, SEM analysis of metal specimens, appearance of PCMs, and variation of thermophysical properties at 0th, 1000th, and 1500th thermal cycles. The most affected area of corrosion, including the dimension of pits, is presented, and comparison is made. Based on the corrosion experiments, recommendations are made for the metal–PCM pairs. Pure sodium acetate trihydrate is observed to suffer from phase segregation and supercooling. After 1500 thermal cycles, the variation in melting and freezing point temperatures for rest of the five PCMs are in the range of ??1.63 to 1.57?°C and ??4.01 to 2.66?°C. Whereas, reduction in latent heat of melting and freezing are in the range of 17.6–28.95% and 15.2–26.78%.</p>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40243-020-00184-4\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-020-00184-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-020-00184-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

摘要

相变材料(PCMs)成功应用于蓄热系统的两个重要方面是与容器材料的兼容性和稳定性。因此,本研究的重点是测试与pcm接触的金属的耐腐蚀性和表面特性,以及加热/冷却循环下pcm的热行为。PCM的选择是针对低温(<100°C)蓄热应用。所考虑的PCMs有石蜡、三水合乙酸钠、月桂酸、肉豆蔻酸、棕榈酸和硬脂酸。测试的金属样品是铝,铜和不锈钢,因为它们在热设备中广泛使用。试验采用浸没腐蚀试验方法,按照ASTM G1标准进行。实验在80℃下进行。在室温(30°C)下放置10天、30天和60天。与热稳定性有关,进行1500次融化/冻结循环。对腐蚀速率、金属样品的SEM分析、pcm的外观以及第0、1000和1500次热循环时热物理性质的变化进行了研究。提出了腐蚀影响最大的区域,包括凹坑的尺寸,并进行了比较。在腐蚀实验的基础上,对金属- pcm对提出了建议。纯三水合乙酸钠存在相偏析和过冷现象。经过1500个热循环后,其余5种PCMs的熔点和凝固点温度变化范围在1.63 ~ 1.57℃之间。°C和4.01至2.66°C。融化潜热减少17.6 ~ 28.95%,冻结潜热减少15.2 ~ 26.78%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage

Two of the important aspects for the successful utilization of phase change materials (PCMs) for thermal energy storage systems are compatibility with container materials and stability. Therefore, the present study is focused on testing the corrosion resistance and surface characteristics of metals in contact with PCMs and thermal behavior of PCMs with heating/cooling cycles. The PCM selection is made by targeting low temperature (<100?°C) heat storage applications. The PCMs considered are paraffin wax, sodium acetate tri-hydrate, lauric acid, myristic acid, palmitic acid, and stearic acid. The metal specimens tested are aluminum, copper, and stainless steel because of their wide usage in thermal equipment. The tests are performed by the method of immersion corrosion test, and ASTM G1 standards are followed. The experiments are carried out at 80?°C and room temperature (30?°C) for the duration of 10, 30, and 60?days. Pertaining to thermal stability 1500 melting/freezing cycles are performed. Investigation has been carried out in terms of corrosion rate, SEM analysis of metal specimens, appearance of PCMs, and variation of thermophysical properties at 0th, 1000th, and 1500th thermal cycles. The most affected area of corrosion, including the dimension of pits, is presented, and comparison is made. Based on the corrosion experiments, recommendations are made for the metal–PCM pairs. Pure sodium acetate trihydrate is observed to suffer from phase segregation and supercooling. After 1500 thermal cycles, the variation in melting and freezing point temperatures for rest of the five PCMs are in the range of ??1.63 to 1.57?°C and ??4.01 to 2.66?°C. Whereas, reduction in latent heat of melting and freezing are in the range of 17.6–28.95% and 15.2–26.78%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Performance of high sulfonated poly(ether ether ketone) improved with microcrystalline cellulose and 2,3-dialdehyde cellulose for proton exchange membranes Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors The photothermal properties of hydrogel nanocomposite embedded with ZnO/CuO based on PVA/GA/activated carbon for solar-driven interfacial evaporation Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1