Wuxuan Chen, Peng Wang, Zhihong Zhang, Xudong Deng, C. Zhang, Shenggen Ju
{"title":"基于Westervelt方程的脉冲回波模式非线性超声成像初步研究","authors":"Wuxuan Chen, Peng Wang, Zhihong Zhang, Xudong Deng, C. Zhang, Shenggen Ju","doi":"10.1080/24699322.2019.1649065","DOIUrl":null,"url":null,"abstract":"Abstract Acoustic nonlinear parameter β, was of great interest in tissue characterization in recent years. Nonlinear imaging methods have been reported to provide improved spatial and contrast resolution. We introduce a nonlinear imaging method derived from nonlinear wave equation based on Gaussian-form solution assumption, which can be applied in pulse-echo mode on diagnostic ultrasound. Through making the use of two pulse transmission, only nonlinear effects are reserved and other effects like scattering, diffraction and linear attenuation can be eliminated. For validation of this method a set of simulation results are generated with a nonlinear simulator. Simulated images also indicate that our method clearly describes the spatial distribution of B/A in the medium.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"24 1","pages":"54 - 61"},"PeriodicalIF":1.5000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24699322.2019.1649065","citationCount":"5","resultStr":"{\"title\":\"Nonlinear ultrasonic imaging in pulse-echo mode using Westervelt equation: a preliminary research\",\"authors\":\"Wuxuan Chen, Peng Wang, Zhihong Zhang, Xudong Deng, C. Zhang, Shenggen Ju\",\"doi\":\"10.1080/24699322.2019.1649065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Acoustic nonlinear parameter β, was of great interest in tissue characterization in recent years. Nonlinear imaging methods have been reported to provide improved spatial and contrast resolution. We introduce a nonlinear imaging method derived from nonlinear wave equation based on Gaussian-form solution assumption, which can be applied in pulse-echo mode on diagnostic ultrasound. Through making the use of two pulse transmission, only nonlinear effects are reserved and other effects like scattering, diffraction and linear attenuation can be eliminated. For validation of this method a set of simulation results are generated with a nonlinear simulator. Simulated images also indicate that our method clearly describes the spatial distribution of B/A in the medium.\",\"PeriodicalId\":56051,\"journal\":{\"name\":\"Computer Assisted Surgery\",\"volume\":\"24 1\",\"pages\":\"54 - 61\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24699322.2019.1649065\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Assisted Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/24699322.2019.1649065\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2019.1649065","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
Nonlinear ultrasonic imaging in pulse-echo mode using Westervelt equation: a preliminary research
Abstract Acoustic nonlinear parameter β, was of great interest in tissue characterization in recent years. Nonlinear imaging methods have been reported to provide improved spatial and contrast resolution. We introduce a nonlinear imaging method derived from nonlinear wave equation based on Gaussian-form solution assumption, which can be applied in pulse-echo mode on diagnostic ultrasound. Through making the use of two pulse transmission, only nonlinear effects are reserved and other effects like scattering, diffraction and linear attenuation can be eliminated. For validation of this method a set of simulation results are generated with a nonlinear simulator. Simulated images also indicate that our method clearly describes the spatial distribution of B/A in the medium.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.