IHEP的100米x射线测试设施

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Experimental Astronomy Pub Date : 2022-10-22 DOI:10.1007/s10686-022-09872-7
Yusa Wang, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Can Chen, Xinqiao Li, Yuxuan Zhu, Xiaofan Zhao, Jia Ma, He Xu, Yupeng Chen, Guofeng Wang, Fangjun Lu, Shuangnan Zhang, Shu Zhang, Yong Chen, Yupeng Xu
{"title":"IHEP的100米x射线测试设施","authors":"Yusa Wang,&nbsp;Zijian Zhao,&nbsp;Dongjie Hou,&nbsp;Xiongtao Yang,&nbsp;Can Chen,&nbsp;Xinqiao Li,&nbsp;Yuxuan Zhu,&nbsp;Xiaofan Zhao,&nbsp;Jia Ma,&nbsp;He Xu,&nbsp;Yupeng Chen,&nbsp;Guofeng Wang,&nbsp;Fangjun Lu,&nbsp;Shuangnan Zhang,&nbsp;Shu Zhang,&nbsp;Yong Chen,&nbsp;Yupeng Xu","doi":"10.1007/s10686-022-09872-7","DOIUrl":null,"url":null,"abstract":"<div><p>The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2<span>\\(\\sim\\)</span>60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09872-7.pdf","citationCount":"1","resultStr":"{\"title\":\"The 100-m X-ray test facility at IHEP\",\"authors\":\"Yusa Wang,&nbsp;Zijian Zhao,&nbsp;Dongjie Hou,&nbsp;Xiongtao Yang,&nbsp;Can Chen,&nbsp;Xinqiao Li,&nbsp;Yuxuan Zhu,&nbsp;Xiaofan Zhao,&nbsp;Jia Ma,&nbsp;He Xu,&nbsp;Yupeng Chen,&nbsp;Guofeng Wang,&nbsp;Fangjun Lu,&nbsp;Shuangnan Zhang,&nbsp;Shu Zhang,&nbsp;Yong Chen,&nbsp;Yupeng Xu\",\"doi\":\"10.1007/s10686-022-09872-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2<span>\\\\(\\\\sim\\\\)</span>60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10686-022-09872-7.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-022-09872-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-022-09872-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

高能物理研究所(IHEP)的100米x射线测试设施最初于2012年提出,用于测试和校准硬x射线调制望远镜(HXMT)的x射线探测器,具有支持未来x射线任务的能力。与长真空管相连的大型仪器室可容纳x射线反射镜、焦平面探测器等仪器。x射线源安装在真空管的另一端,距离为105 m,可以提供几乎平行的x射线束,覆盖0.2 \(\sim\) 60 keV的能带。爱因斯坦探测器(EP)的x射线反射镜模块和增强x射线定时和偏振测量任务(eXTP)以及引力波高能电磁对偶全天监测器(GECAM)的有效载荷已经在该设备上进行了测试和校准。它也被用来表征焦平面相机和爱因斯坦探测器上使用的铝滤光片。在本文中,我们将介绍该设备的总体配置和功能,并简要介绍使用该设备进行的一些校准结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The 100-m X-ray test facility at IHEP

The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2\(\sim\)60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Astronomy
Experimental Astronomy 地学天文-天文与天体物理
CiteScore
5.30
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.
期刊最新文献
CNNCat: categorizing high-energy photons in a Compton/Pair telescope with convolutional neural networks Reflectivity test method of x-ray optics at the 100-m x-ray test facility Ground calibration and network of the first CATCH pathfinder Simulations and machine learning models for cosmic-ray short-term variations and test-mass charging on board LISA The ground calibration of the HERMES-Pathfinder payload flight models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1