{"title":"IHEP的100米x射线测试设施","authors":"Yusa Wang, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Can Chen, Xinqiao Li, Yuxuan Zhu, Xiaofan Zhao, Jia Ma, He Xu, Yupeng Chen, Guofeng Wang, Fangjun Lu, Shuangnan Zhang, Shu Zhang, Yong Chen, Yupeng Xu","doi":"10.1007/s10686-022-09872-7","DOIUrl":null,"url":null,"abstract":"<div><p>The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2<span>\\(\\sim\\)</span>60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09872-7.pdf","citationCount":"1","resultStr":"{\"title\":\"The 100-m X-ray test facility at IHEP\",\"authors\":\"Yusa Wang, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Can Chen, Xinqiao Li, Yuxuan Zhu, Xiaofan Zhao, Jia Ma, He Xu, Yupeng Chen, Guofeng Wang, Fangjun Lu, Shuangnan Zhang, Shu Zhang, Yong Chen, Yupeng Xu\",\"doi\":\"10.1007/s10686-022-09872-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2<span>\\\\(\\\\sim\\\\)</span>60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10686-022-09872-7.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-022-09872-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-022-09872-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2\(\sim\)60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.