M. S. Jabbar, Israa Ibraheem Al_Barazanchi, Ahmed L. Khalaf, Poh Soon JosephNg, Ahmed Dheyaa Radhi
{"title":"利用先进的线性化技术优化多天线M-MIMO DM通信系统,进行射频前端非线性补偿的综合设计和性能评估研究","authors":"M. S. Jabbar, Israa Ibraheem Al_Barazanchi, Ahmed L. Khalaf, Poh Soon JosephNg, Ahmed Dheyaa Radhi","doi":"10.21533/pen.v11i3.3609","DOIUrl":null,"url":null,"abstract":"The study presented in this research focuses on linearization strategies for compensating for nonlinearity in RF front ends in multi-antenna M-MIMO OFDM communication systems. The study includes the design and evaluation of techniques such as analogue pre-distortion (APD), crest factor reduction (CFR), multi-antenna clipping noise cancellation (M-CNC), and multi-clipping noise cancellation (MCNC). Nonlinearities in RF front ends can cause signal distortion, leading to reduced system performance. To address this issue, various linearization methods have been proposed. This research examines the impact of antenna correlation on power amplifier efficiency and bit error rate (BER) of transmissions using these methods. Simulation studies conducted under high signal-to-noise ratio (SNR) regimes reveal that M-CNC and MCNC approaches offer significant improvement in BER performance and PA efficiency compared to other techniques. Additionally, the study explores the influence of clipping level and antenna correlation on the effectiveness of these methods. The findings suggest that appropriate linearization strategies should be selected based on factors such as the number of antennas, SNR, and clipping level of the system.","PeriodicalId":37519,"journal":{"name":"Periodicals of Engineering and Natural Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing multi-antenna M-MIMO DM communication systems with advanced linearization techniques for RF front-end nonlinearity compensation in a comprehensive design and performance evaluation study\",\"authors\":\"M. S. Jabbar, Israa Ibraheem Al_Barazanchi, Ahmed L. Khalaf, Poh Soon JosephNg, Ahmed Dheyaa Radhi\",\"doi\":\"10.21533/pen.v11i3.3609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study presented in this research focuses on linearization strategies for compensating for nonlinearity in RF front ends in multi-antenna M-MIMO OFDM communication systems. The study includes the design and evaluation of techniques such as analogue pre-distortion (APD), crest factor reduction (CFR), multi-antenna clipping noise cancellation (M-CNC), and multi-clipping noise cancellation (MCNC). Nonlinearities in RF front ends can cause signal distortion, leading to reduced system performance. To address this issue, various linearization methods have been proposed. This research examines the impact of antenna correlation on power amplifier efficiency and bit error rate (BER) of transmissions using these methods. Simulation studies conducted under high signal-to-noise ratio (SNR) regimes reveal that M-CNC and MCNC approaches offer significant improvement in BER performance and PA efficiency compared to other techniques. Additionally, the study explores the influence of clipping level and antenna correlation on the effectiveness of these methods. The findings suggest that appropriate linearization strategies should be selected based on factors such as the number of antennas, SNR, and clipping level of the system.\",\"PeriodicalId\":37519,\"journal\":{\"name\":\"Periodicals of Engineering and Natural Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodicals of Engineering and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21533/pen.v11i3.3609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodicals of Engineering and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21533/pen.v11i3.3609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Optimizing multi-antenna M-MIMO DM communication systems with advanced linearization techniques for RF front-end nonlinearity compensation in a comprehensive design and performance evaluation study
The study presented in this research focuses on linearization strategies for compensating for nonlinearity in RF front ends in multi-antenna M-MIMO OFDM communication systems. The study includes the design and evaluation of techniques such as analogue pre-distortion (APD), crest factor reduction (CFR), multi-antenna clipping noise cancellation (M-CNC), and multi-clipping noise cancellation (MCNC). Nonlinearities in RF front ends can cause signal distortion, leading to reduced system performance. To address this issue, various linearization methods have been proposed. This research examines the impact of antenna correlation on power amplifier efficiency and bit error rate (BER) of transmissions using these methods. Simulation studies conducted under high signal-to-noise ratio (SNR) regimes reveal that M-CNC and MCNC approaches offer significant improvement in BER performance and PA efficiency compared to other techniques. Additionally, the study explores the influence of clipping level and antenna correlation on the effectiveness of these methods. The findings suggest that appropriate linearization strategies should be selected based on factors such as the number of antennas, SNR, and clipping level of the system.