评定钢瓶力学性能的磁法

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Evaluation Pub Date : 2022-08-01 DOI:10.32548/2022.me-04262
Chai Jun-Hui, Lv Zhong-Jie, Shen Zheng-Xiang, Zhang Zi-Jiang, Bo Xu, Shen Jian-Min, Qian Sheng-Jie, Y. Fu
{"title":"评定钢瓶力学性能的磁法","authors":"Chai Jun-Hui, Lv Zhong-Jie, Shen Zheng-Xiang, Zhang Zi-Jiang, Bo Xu, Shen Jian-Min, Qian Sheng-Jie, Y. Fu","doi":"10.32548/2022.me-04262","DOIUrl":null,"url":null,"abstract":"Using a nondestructive testing method based on hysteresis behavior, the structural-mechanical dependence of the coercive force of 35CrMo steel components was compared with that of standard specimens. As described in the magnetic Jiles–Atherton model, the magnetic coercive force of the cylinders was inversely proportional to the grain refinement, which was validated by means of metallographic examination and hardness tests. Simultaneously, this study presented an experimental validation by destructive testing for determining the relationship between the measured magnetic parameter and the property of concern and a linear correlation between coercive force and hardness. These observations provide a method to quickly and nondestructively evaluate the mechanical properties of steel components.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Method for Evaluating Mechanical Properties of Steel Cylinders\",\"authors\":\"Chai Jun-Hui, Lv Zhong-Jie, Shen Zheng-Xiang, Zhang Zi-Jiang, Bo Xu, Shen Jian-Min, Qian Sheng-Jie, Y. Fu\",\"doi\":\"10.32548/2022.me-04262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a nondestructive testing method based on hysteresis behavior, the structural-mechanical dependence of the coercive force of 35CrMo steel components was compared with that of standard specimens. As described in the magnetic Jiles–Atherton model, the magnetic coercive force of the cylinders was inversely proportional to the grain refinement, which was validated by means of metallographic examination and hardness tests. Simultaneously, this study presented an experimental validation by destructive testing for determining the relationship between the measured magnetic parameter and the property of concern and a linear correlation between coercive force and hardness. These observations provide a method to quickly and nondestructively evaluate the mechanical properties of steel components.\",\"PeriodicalId\":49876,\"journal\":{\"name\":\"Materials Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32548/2022.me-04262\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2022.me-04262","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

采用基于迟滞特性的无损检测方法,比较了35CrMo钢构件矫顽力与标准试样的结构-力学相关性。根据磁Jiles-Atherton模型,圆柱体的磁矫顽力与晶粒细化成反比,通过金相检验和硬度测试验证了这一点。同时,本研究通过破坏性试验验证了测量的磁性参数与关注的性质之间的关系以及矫顽力与硬度之间的线性关系。这些观察结果为快速、无损地评价钢构件的力学性能提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic Method for Evaluating Mechanical Properties of Steel Cylinders
Using a nondestructive testing method based on hysteresis behavior, the structural-mechanical dependence of the coercive force of 35CrMo steel components was compared with that of standard specimens. As described in the magnetic Jiles–Atherton model, the magnetic coercive force of the cylinders was inversely proportional to the grain refinement, which was validated by means of metallographic examination and hardness tests. Simultaneously, this study presented an experimental validation by destructive testing for determining the relationship between the measured magnetic parameter and the property of concern and a linear correlation between coercive force and hardness. These observations provide a method to quickly and nondestructively evaluate the mechanical properties of steel components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Evaluation
Materials Evaluation 工程技术-材料科学:表征与测试
CiteScore
0.90
自引率
16.70%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.
期刊最新文献
Terahertz Nondestructive Evaluation of Corroding Multilayer Paint Stacks Edge Response and Defect Detectability in Flat Panel Digital Radiography The Evolution of Weld Inspection: Unlocking the Potential of Phased Array Ultrasonic Testing Intelligent Method for Corrosion Detection and Quantification in Aircraft Lap Joints Using Pulsed Eddy Current Multibranch Block-Based Grain Size Classification Of Hybrid Disk Using Ultrasonic Scattering: A Deep Learning Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1