具有单光子灵敏度的稳定钙钛矿单晶X射线成像探测器

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2023-05-08 DOI:10.1038/s41566-023-01207-y
Kostiantyn Sakhatskyi, Bekir Turedi, Gebhard J. Matt, Erfu Wu, Anastasiia Sakhatska, Vitalii Bartosh, Muhammad Naufal Lintangpradipto, Rounak Naphade, Ivan Shorubalko, Omar F. Mohammed, Sergii Yakunin, Osman M. Bakr, Maksym V. Kovalenko
{"title":"具有单光子灵敏度的稳定钙钛矿单晶X射线成像探测器","authors":"Kostiantyn Sakhatskyi, Bekir Turedi, Gebhard J. Matt, Erfu Wu, Anastasiia Sakhatska, Vitalii Bartosh, Muhammad Naufal Lintangpradipto, Rounak Naphade, Ivan Shorubalko, Omar F. Mohammed, Sergii Yakunin, Osman M. Bakr, Maksym V. Kovalenko","doi":"10.1038/s41566-023-01207-y","DOIUrl":null,"url":null,"abstract":"A major thrust of medical X-ray imaging is to minimize the X-ray dose acquired by the patient, down to single-photon sensitivity. Such characteristics have been demonstrated with only a few direct-detection semiconductor materials such as CdTe and Si; nonetheless, their industrial deployment in medical diagnostics is still impeded by elaborate and costly fabrication processes. Hybrid lead halide perovskites can be a viable alternative owing to their facile solution growth. However, hybrid perovskites are unstable under high-field biasing in X-ray detectors, owing to structural lability and mixed electronic–ionic conductivity. Here we show that both single-photon-counting and long-term stable performance of perovskite X-ray detectors are attained in the photovoltaic mode of operation at zero-voltage bias, employing thick and uniform methylammonium lead iodide single-crystal films (up to 300 µm) and solution directly grown on hole-transporting electrodes. The operational device stability exceeded one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging. Array detectors demonstrate high spatial resolution up to 11 lp mm−1. These findings pave the path for the implementation of hybrid perovskites in low-cost, low-dose commercial detector arrays for X-ray imaging. We show perovskite X-ray detection at zero-voltage bias with operational device stability exceeding one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 6","pages":"510-517"},"PeriodicalIF":32.3000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-023-01207-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity\",\"authors\":\"Kostiantyn Sakhatskyi, Bekir Turedi, Gebhard J. Matt, Erfu Wu, Anastasiia Sakhatska, Vitalii Bartosh, Muhammad Naufal Lintangpradipto, Rounak Naphade, Ivan Shorubalko, Omar F. Mohammed, Sergii Yakunin, Osman M. Bakr, Maksym V. Kovalenko\",\"doi\":\"10.1038/s41566-023-01207-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major thrust of medical X-ray imaging is to minimize the X-ray dose acquired by the patient, down to single-photon sensitivity. Such characteristics have been demonstrated with only a few direct-detection semiconductor materials such as CdTe and Si; nonetheless, their industrial deployment in medical diagnostics is still impeded by elaborate and costly fabrication processes. Hybrid lead halide perovskites can be a viable alternative owing to their facile solution growth. However, hybrid perovskites are unstable under high-field biasing in X-ray detectors, owing to structural lability and mixed electronic–ionic conductivity. Here we show that both single-photon-counting and long-term stable performance of perovskite X-ray detectors are attained in the photovoltaic mode of operation at zero-voltage bias, employing thick and uniform methylammonium lead iodide single-crystal films (up to 300 µm) and solution directly grown on hole-transporting electrodes. The operational device stability exceeded one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging. Array detectors demonstrate high spatial resolution up to 11 lp mm−1. These findings pave the path for the implementation of hybrid perovskites in low-cost, low-dose commercial detector arrays for X-ray imaging. We show perovskite X-ray detection at zero-voltage bias with operational device stability exceeding one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"17 6\",\"pages\":\"510-517\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41566-023-01207-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-023-01207-y\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-023-01207-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

医用 X 射线成像的一个主要目标是最大限度地降低患者所摄入的 X 射线剂量,达到单光子灵敏度。目前只有碲化镉和硅等少数几种直接探测半导体材料具有这种特性;然而,它们在医疗诊断领域的工业应用仍然受到复杂而昂贵的制造工艺的阻碍。混合卤化铅包晶石因其易于溶液生长而成为一种可行的替代材料。然而,由于结构的不稳定性和电子-离子混合导电性,混合过氧化物在 X 射线探测器的高场偏压下并不稳定。在这里,我们利用厚而均匀的甲基碘化铅单晶薄膜(长达 300 微米)和直接生长在空穴传输电极上的溶液,展示了在零电压偏置的光电工作模式下,包晶石 X 射线探测器既能进行单光子计数,又能实现长期稳定的性能。设备的运行稳定性超过一年。利用 18 keV X 射线可获得 88% 的探测效率和 90 pGyair 的噪声等效剂量,从而实现单光子敏感、低剂量和能量分辨 X 射线成像。阵列探测器的空间分辨率高达 11 lp mm-1。这些发现为在用于 X 射线成像的低成本、低剂量商用探测器阵列中使用混合包晶铺平了道路。我们展示了在零电压偏置下的包光体 X 射线探测,其设备运行稳定性超过一年。利用 18 keV X 射线可获得 88% 的探测效率和 90 pGyair 的噪声等效剂量,从而实现了单光子灵敏、低剂量和能量分辨 X 射线成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity
A major thrust of medical X-ray imaging is to minimize the X-ray dose acquired by the patient, down to single-photon sensitivity. Such characteristics have been demonstrated with only a few direct-detection semiconductor materials such as CdTe and Si; nonetheless, their industrial deployment in medical diagnostics is still impeded by elaborate and costly fabrication processes. Hybrid lead halide perovskites can be a viable alternative owing to their facile solution growth. However, hybrid perovskites are unstable under high-field biasing in X-ray detectors, owing to structural lability and mixed electronic–ionic conductivity. Here we show that both single-photon-counting and long-term stable performance of perovskite X-ray detectors are attained in the photovoltaic mode of operation at zero-voltage bias, employing thick and uniform methylammonium lead iodide single-crystal films (up to 300 µm) and solution directly grown on hole-transporting electrodes. The operational device stability exceeded one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging. Array detectors demonstrate high spatial resolution up to 11 lp mm−1. These findings pave the path for the implementation of hybrid perovskites in low-cost, low-dose commercial detector arrays for X-ray imaging. We show perovskite X-ray detection at zero-voltage bias with operational device stability exceeding one year. Detection efficiency of 88% and noise-equivalent dose of 90 pGyair are obtained with 18 keV X-rays, allowing single-photon-sensitive, low-dose and energy-resolved X-ray imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Topological orbital angular momentum extraction and twofold protection of vortex transport Expanding momentum bandgaps in photonic time crystals through resonances Author Correction: Image-guided computational holographic wavefront shaping Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon Attosecond transient interferometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1