瓦斯抽放井精密定向钻进技术研究

IF 2.8 Q2 MINING & MINERAL PROCESSING Mining of Mineral Deposits Pub Date : 2022-06-30 DOI:10.33271/mining16.02.027
Yukun Ma, Yanpeng Xu
{"title":"瓦斯抽放井精密定向钻进技术研究","authors":"Yukun Ma, Yanpeng Xu","doi":"10.33271/mining16.02.027","DOIUrl":null,"url":null,"abstract":"Purpose. In order to solve the serious problem of borehole deflection in coal mine gas drainage, the precision directional drilling tool has been developed and improved, as well as the general borehole deflection laws have been studied. Methods. By using ordinary drilling pipes, one set of precision directional drilling tool and two sets of precision directional drilling tools, gas-drainage boreholes have been drilled in the mine and, subsequently, the borehole trajectory parameters have been measured using an inclinometer. Findings. The borehole inclination angle first tends to decrease and then to increase, while the azimuth angle generally increases. The precision directional drilling tool is effective, especially when using two sets of drilling tools. In this case, the average 100-meter final borehole deflection is reduced by 66.0%, the average inclination angle is reduced by 52.3%, and the average azimuth angle is reduced by 46.5%. Originality. A tool for precision directional drilling has been developed and improved, and its effectiveness has been confirmed; the general laws of borehole deflection have been summarized from the overall for subsection intervals. Practical implications. The research results are of great guiding significance for preventing the gas-drainage borehole deflections and further research on the tool for precision directional drilling.","PeriodicalId":43896,"journal":{"name":"Mining of Mineral Deposits","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research into technology for precision directional drilling of gas-drainage boreholes\",\"authors\":\"Yukun Ma, Yanpeng Xu\",\"doi\":\"10.33271/mining16.02.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. In order to solve the serious problem of borehole deflection in coal mine gas drainage, the precision directional drilling tool has been developed and improved, as well as the general borehole deflection laws have been studied. Methods. By using ordinary drilling pipes, one set of precision directional drilling tool and two sets of precision directional drilling tools, gas-drainage boreholes have been drilled in the mine and, subsequently, the borehole trajectory parameters have been measured using an inclinometer. Findings. The borehole inclination angle first tends to decrease and then to increase, while the azimuth angle generally increases. The precision directional drilling tool is effective, especially when using two sets of drilling tools. In this case, the average 100-meter final borehole deflection is reduced by 66.0%, the average inclination angle is reduced by 52.3%, and the average azimuth angle is reduced by 46.5%. Originality. A tool for precision directional drilling has been developed and improved, and its effectiveness has been confirmed; the general laws of borehole deflection have been summarized from the overall for subsection intervals. Practical implications. The research results are of great guiding significance for preventing the gas-drainage borehole deflections and further research on the tool for precision directional drilling.\",\"PeriodicalId\":43896,\"journal\":{\"name\":\"Mining of Mineral Deposits\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining of Mineral Deposits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/mining16.02.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining of Mineral Deposits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/mining16.02.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 3

摘要

意图为了解决煤矿瓦斯抽放中井眼偏斜严重的问题,开发和改进了精密定向钻具,并研究了井眼偏斜的一般规律。方法。通过使用普通钻杆、一套精密定向钻具和两套精密定向钻机,在矿井中钻出了气体排放钻孔,随后使用倾角仪测量了钻孔轨迹参数。调查结果。井眼倾角先减小后增大,方位角一般增大。精密定向钻具是有效的,特别是当使用两套钻具时。在这种情况下,100米最终钻孔的平均偏转减少了66.0%,平均倾角减少了52.3%,平均方位角减少了46.5%。开发和改进了一种用于精密定向钻井的工具,并证实了其有效性;从总体上总结了井眼偏移的一般规律。实际意义。研究结果对防止瓦斯抽放井眼偏斜和进一步研究精密定向钻井工具具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research into technology for precision directional drilling of gas-drainage boreholes
Purpose. In order to solve the serious problem of borehole deflection in coal mine gas drainage, the precision directional drilling tool has been developed and improved, as well as the general borehole deflection laws have been studied. Methods. By using ordinary drilling pipes, one set of precision directional drilling tool and two sets of precision directional drilling tools, gas-drainage boreholes have been drilled in the mine and, subsequently, the borehole trajectory parameters have been measured using an inclinometer. Findings. The borehole inclination angle first tends to decrease and then to increase, while the azimuth angle generally increases. The precision directional drilling tool is effective, especially when using two sets of drilling tools. In this case, the average 100-meter final borehole deflection is reduced by 66.0%, the average inclination angle is reduced by 52.3%, and the average azimuth angle is reduced by 46.5%. Originality. A tool for precision directional drilling has been developed and improved, and its effectiveness has been confirmed; the general laws of borehole deflection have been summarized from the overall for subsection intervals. Practical implications. The research results are of great guiding significance for preventing the gas-drainage borehole deflections and further research on the tool for precision directional drilling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining of Mineral Deposits
Mining of Mineral Deposits MINING & MINERAL PROCESSING-
CiteScore
5.20
自引率
15.80%
发文量
52
期刊最新文献
Analyzing stability of protective structures as the elements of geotechnical tailing pond safety Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods Optimizing the blast fragmentation quality of discontinuous rock mass: Case study of Jebel Bouzegza Open-Cast Mine, North Algeria Use of solid mining waste to improve water retention capacity of loamy soils Deformation as a process to transform shape and volume of protective structures of the development mine workings during coal-rock mass off-loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1