水溶液中亚铁离子与六方菱铁矿相互作用机理及动力学

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemical Transactions Pub Date : 2015-09-22 DOI:10.1186/s12932-015-0031-3
Tianyu Gao, Yougang Shen, Zhaoheng Jia, Guohong Qiu, Fan Liu, Yashan Zhang, Xionghan Feng, Chongfa Cai
{"title":"水溶液中亚铁离子与六方菱铁矿相互作用机理及动力学","authors":"Tianyu Gao,&nbsp;Yougang Shen,&nbsp;Zhaoheng Jia,&nbsp;Guohong Qiu,&nbsp;Fan Liu,&nbsp;Yashan Zhang,&nbsp;Xionghan Feng,&nbsp;Chongfa Cai","doi":"10.1186/s12932-015-0031-3","DOIUrl":null,"url":null,"abstract":"<p>In soils and sediments, manganese oxides and oxygen usually participate in the oxidation of ferrous ions. There is limited information concerning the interaction process and mechanisms of ferrous ions and manganese oxides. The influence of air (oxygen) on reaction process and kinetics has been seldom studied. Because redox reactions usually occur in open systems, the participation of air needs to be further investigated.</p><p>To simulate this process, hexagonal birnessite was prepared and used to oxidize ferrous ions in anoxic and aerobic aqueous systems. The influence of pH, concentration, temperature, and presence of air (oxygen) on the redox rate was studied. The redox reaction of birnessite and ferrous ions was accompanied by the release of Mn<sup>2+</sup> and K<sup>+</sup> ions, a significant decrease in Fe<sup>2+</sup> concentration, and the formation of mixed lepidocrocite and goethite during the initial stage. Lepidocrocite did not completely transform into goethite under anoxic condition with pH about 5.5 within 30?days. Fe<sup>2+</sup> exhibited much higher catalytic activity than Mn<sup>2+</sup> during the transformation from amorphous Fe(III)-hydroxide to lepidocrocite and goethite under anoxic conditions. The release rates of Mn<sup>2+</sup> were compared to estimate the redox rates of birnessite and Fe<sup>2+</sup> under different conditions.</p><p>Redox rate was found to be controlled by chemical reaction, and increased with increasing Fe<sup>2+</sup> concentration, pH, and temperature. The formation of ferric (hydr)oxides precipitate inhibited the further reduction of birnessite. The presence of air accelerated the oxidation of Fe<sup>2+</sup> to ferric oxides and facilitated the chemical stability of birnessite, which was not completely reduced and dissolved after 18?days. As for the oxidation of aqueous ferrous ions by oxygen in air, low and high pHs facilitated the formation of goethite and lepidocrocite, respectively. The experimental results illustrated the single and combined effects of manganese oxide and air on the transformation of Fe<sup>2+</sup> to ferric oxides.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"16 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2015-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-015-0031-3","citationCount":"20","resultStr":"{\"title\":\"Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems\",\"authors\":\"Tianyu Gao,&nbsp;Yougang Shen,&nbsp;Zhaoheng Jia,&nbsp;Guohong Qiu,&nbsp;Fan Liu,&nbsp;Yashan Zhang,&nbsp;Xionghan Feng,&nbsp;Chongfa Cai\",\"doi\":\"10.1186/s12932-015-0031-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In soils and sediments, manganese oxides and oxygen usually participate in the oxidation of ferrous ions. There is limited information concerning the interaction process and mechanisms of ferrous ions and manganese oxides. The influence of air (oxygen) on reaction process and kinetics has been seldom studied. Because redox reactions usually occur in open systems, the participation of air needs to be further investigated.</p><p>To simulate this process, hexagonal birnessite was prepared and used to oxidize ferrous ions in anoxic and aerobic aqueous systems. The influence of pH, concentration, temperature, and presence of air (oxygen) on the redox rate was studied. The redox reaction of birnessite and ferrous ions was accompanied by the release of Mn<sup>2+</sup> and K<sup>+</sup> ions, a significant decrease in Fe<sup>2+</sup> concentration, and the formation of mixed lepidocrocite and goethite during the initial stage. Lepidocrocite did not completely transform into goethite under anoxic condition with pH about 5.5 within 30?days. Fe<sup>2+</sup> exhibited much higher catalytic activity than Mn<sup>2+</sup> during the transformation from amorphous Fe(III)-hydroxide to lepidocrocite and goethite under anoxic conditions. The release rates of Mn<sup>2+</sup> were compared to estimate the redox rates of birnessite and Fe<sup>2+</sup> under different conditions.</p><p>Redox rate was found to be controlled by chemical reaction, and increased with increasing Fe<sup>2+</sup> concentration, pH, and temperature. The formation of ferric (hydr)oxides precipitate inhibited the further reduction of birnessite. The presence of air accelerated the oxidation of Fe<sup>2+</sup> to ferric oxides and facilitated the chemical stability of birnessite, which was not completely reduced and dissolved after 18?days. As for the oxidation of aqueous ferrous ions by oxygen in air, low and high pHs facilitated the formation of goethite and lepidocrocite, respectively. The experimental results illustrated the single and combined effects of manganese oxide and air on the transformation of Fe<sup>2+</sup> to ferric oxides.</p>\",\"PeriodicalId\":12694,\"journal\":{\"name\":\"Geochemical Transactions\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2015-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12932-015-0031-3\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Transactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12932-015-0031-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-015-0031-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 20

摘要

在土壤和沉积物中,锰氧化物和氧通常参与铁离子的氧化。关于铁离子与锰氧化物的相互作用过程和机理的研究有限。空气(氧)对反应过程和动力学的影响研究很少。由于氧化还原反应通常发生在开放体系中,因此需要进一步研究空气的参与。为了模拟这一过程,制备了六方菱铁矿,并将其用于缺氧和好氧水溶液中氧化亚铁离子。研究了pH、浓度、温度和空气(氧)的存在对氧化还原速率的影响。硼钛矿与铁离子的氧化还原反应在初始阶段伴随着Mn2+和K+离子的释放,Fe2+浓度的显著降低,并形成混合的绢云母和针铁矿。在pH约5.5的缺氧条件下,蛭石在30d内未完全转化为针铁矿。在缺氧条件下,Fe2+表现出比Mn2+更高的催化活性,从无定形的氢氧化铁(III)-转变为绢云母和针铁矿。通过比较Mn2+的释放速率,估算出不同条件下birnesite和Fe2+的氧化还原速率。氧化还原速率受化学反应控制,随Fe2+浓度、pH和温度的增加而增加。铁(氢)氧化物沉淀的形成抑制了硼镁矿的进一步还原。空气的存在加速了Fe2+氧化成氧化铁的过程,促进了birnite的化学稳定性,在18天后仍未完全还原溶解。空气中水相铁离子被氧氧化时,低ph值和高ph值分别有利于针铁矿和绢云母的形成。实验结果表明,氧化锰和空气对Fe2+转化为氧化铁有单独或联合的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems

In soils and sediments, manganese oxides and oxygen usually participate in the oxidation of ferrous ions. There is limited information concerning the interaction process and mechanisms of ferrous ions and manganese oxides. The influence of air (oxygen) on reaction process and kinetics has been seldom studied. Because redox reactions usually occur in open systems, the participation of air needs to be further investigated.

To simulate this process, hexagonal birnessite was prepared and used to oxidize ferrous ions in anoxic and aerobic aqueous systems. The influence of pH, concentration, temperature, and presence of air (oxygen) on the redox rate was studied. The redox reaction of birnessite and ferrous ions was accompanied by the release of Mn2+ and K+ ions, a significant decrease in Fe2+ concentration, and the formation of mixed lepidocrocite and goethite during the initial stage. Lepidocrocite did not completely transform into goethite under anoxic condition with pH about 5.5 within 30?days. Fe2+ exhibited much higher catalytic activity than Mn2+ during the transformation from amorphous Fe(III)-hydroxide to lepidocrocite and goethite under anoxic conditions. The release rates of Mn2+ were compared to estimate the redox rates of birnessite and Fe2+ under different conditions.

Redox rate was found to be controlled by chemical reaction, and increased with increasing Fe2+ concentration, pH, and temperature. The formation of ferric (hydr)oxides precipitate inhibited the further reduction of birnessite. The presence of air accelerated the oxidation of Fe2+ to ferric oxides and facilitated the chemical stability of birnessite, which was not completely reduced and dissolved after 18?days. As for the oxidation of aqueous ferrous ions by oxygen in air, low and high pHs facilitated the formation of goethite and lepidocrocite, respectively. The experimental results illustrated the single and combined effects of manganese oxide and air on the transformation of Fe2+ to ferric oxides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemical Transactions
Geochemical Transactions 地学-地球化学与地球物理
CiteScore
3.70
自引率
4.30%
发文量
2
审稿时长
>12 weeks
期刊介绍: Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.
期刊最新文献
Silicate coprecipitation reduces green rust crystal size and limits dissolution-precipitation during air oxidation Development of the Arabian-Nubian Shield along the Marsa Alam-Idfu transect, Central-Eastern Desert, Egypt: geochemical implementation of zircon U-Pb geochronology Probing atomic-scale processes at the ferrihydrite-water interface with reactive molecular dynamics Water quality assessment of Upper Ganga and Yamuna river systems during COVID-19 pandemic-induced lockdown: imprints of river rejuvenation Effect of Mn2+ concentration on the growth of δ-MnO2 crystals under acidic conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1