{"title":"微观计算机断层扫描辅助有限元建模作为一种方法来估计木材的湿膨胀系数:对软木枝上的对生和压缩木材的案例研究","authors":"S. Florisson, M. Hartwig, M. Wohlert, E. Gamstedt","doi":"10.1515/hf-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract Microscopic X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method in material science to relate material properties to heterogeneous microstructures. Recently, a methodology was developed for the XµCT aided FE modelling of wood, which characterises the process from specimen preparation to estimation of material properties. In the current research, this methodology is tested on branches of Norway spruce (Picea abies (L.) Karst.) to estimate the hygroexpansion coefficients of opposite (OW) and compression wood (CW). These properties are largely unknown and have engineering implications. The study is complemented by measurements of density, moisture content (MC) and elastic moduli. Results showed that the methodology assisted in the design of an integrated process and the identification of bottlenecks. It was seen that the level of detail of the numerical model had a strong influence on the obtained hygroexpansion properties. CW from branches showed higher density and longitudinal shrinkage coefficients, and elastic moduli less affected by MC. These differences are unlikely caused by MC, but more likely by the characteristics of the microstructure.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microscopic computed tomography aided finite element modelling as a methodology to estimate hygroexpansion coefficients of wood: a case study on opposite and compression wood in softwood branches\",\"authors\":\"S. Florisson, M. Hartwig, M. Wohlert, E. Gamstedt\",\"doi\":\"10.1515/hf-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Microscopic X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method in material science to relate material properties to heterogeneous microstructures. Recently, a methodology was developed for the XµCT aided FE modelling of wood, which characterises the process from specimen preparation to estimation of material properties. In the current research, this methodology is tested on branches of Norway spruce (Picea abies (L.) Karst.) to estimate the hygroexpansion coefficients of opposite (OW) and compression wood (CW). These properties are largely unknown and have engineering implications. The study is complemented by measurements of density, moisture content (MC) and elastic moduli. Results showed that the methodology assisted in the design of an integrated process and the identification of bottlenecks. It was seen that the level of detail of the numerical model had a strong influence on the obtained hygroexpansion properties. CW from branches showed higher density and longitudinal shrinkage coefficients, and elastic moduli less affected by MC. These differences are unlikely caused by MC, but more likely by the characteristics of the microstructure.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2023-0014\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0014","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
Microscopic computed tomography aided finite element modelling as a methodology to estimate hygroexpansion coefficients of wood: a case study on opposite and compression wood in softwood branches
Abstract Microscopic X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method in material science to relate material properties to heterogeneous microstructures. Recently, a methodology was developed for the XµCT aided FE modelling of wood, which characterises the process from specimen preparation to estimation of material properties. In the current research, this methodology is tested on branches of Norway spruce (Picea abies (L.) Karst.) to estimate the hygroexpansion coefficients of opposite (OW) and compression wood (CW). These properties are largely unknown and have engineering implications. The study is complemented by measurements of density, moisture content (MC) and elastic moduli. Results showed that the methodology assisted in the design of an integrated process and the identification of bottlenecks. It was seen that the level of detail of the numerical model had a strong influence on the obtained hygroexpansion properties. CW from branches showed higher density and longitudinal shrinkage coefficients, and elastic moduli less affected by MC. These differences are unlikely caused by MC, but more likely by the characteristics of the microstructure.
期刊介绍:
Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.