Rudolf Wittner, Petr Holub, Cecilia Mascia, Francesca Frexia, Heimo Müller, Markus Plass, Clare Allocca, Fay Betsou, Tony Burdett, Ibon Cancio, Adriane Chapman, Martin Chapman, Mélanie Courtot, Vasa Curcin, Johann Eder, Mark Elliot, Katrina Exter, Carole Goble, Martin Golebiewski, Bron Kisler, Andreas Kremer, Simone Leo, Sheng Lin-Gibson, Anna Marsano, Marco Mattavelli, Josh Moore, Hiroki Nakae, Isabelle Perseil, Ayat Salman, James Sluka, Stian Soiland-Reyes, Caterina Strambio-De-Castillia, Michael Sussman, Jason R. Swedlow, Kurt Zatloukal, Jörg Geiger
{"title":"迈向生命科学中数据和标本来源的共同标准","authors":"Rudolf Wittner, Petr Holub, Cecilia Mascia, Francesca Frexia, Heimo Müller, Markus Plass, Clare Allocca, Fay Betsou, Tony Burdett, Ibon Cancio, Adriane Chapman, Martin Chapman, Mélanie Courtot, Vasa Curcin, Johann Eder, Mark Elliot, Katrina Exter, Carole Goble, Martin Golebiewski, Bron Kisler, Andreas Kremer, Simone Leo, Sheng Lin-Gibson, Anna Marsano, Marco Mattavelli, Josh Moore, Hiroki Nakae, Isabelle Perseil, Ayat Salman, James Sluka, Stian Soiland-Reyes, Caterina Strambio-De-Castillia, Michael Sussman, Jason R. Swedlow, Kurt Zatloukal, Jörg Geiger","doi":"10.1002/lrh2.10365","DOIUrl":null,"url":null,"abstract":"<p>Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by the quality of the samples, the experimental methods, and the data analysis. Therefore, a comprehensive and precise documentation of the pre-analytical conditions, the analytical procedures, and the data processing are essential to be able to assess the validity of the research results. With the increasing importance of the exchange, reuse, and sharing of data and samples, procedures are required that enable cross-organizational documentation, traceability, and non-repudiation. At present, this information on the provenance of samples and data is mostly either sparse, incomplete, or incoherent. Since there is no uniform framework, this information is usually only provided within the organization and not interoperably. At the same time, the collection and sharing of biological and environmental specimens increasingly require definition and documentation of benefit sharing and compliance to regulatory requirements rather than consideration of pure scientific needs. In this publication, we present an ongoing standardization effort to provide trustworthy machine-actionable documentation of the data lineage and specimens. We would like to invite experts from the biotechnology and biomedical fields to further contribute to the standard.</p>","PeriodicalId":43916,"journal":{"name":"Learning Health Systems","volume":"8 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lrh2.10365","citationCount":"0","resultStr":"{\"title\":\"Toward a common standard for data and specimen provenance in life sciences\",\"authors\":\"Rudolf Wittner, Petr Holub, Cecilia Mascia, Francesca Frexia, Heimo Müller, Markus Plass, Clare Allocca, Fay Betsou, Tony Burdett, Ibon Cancio, Adriane Chapman, Martin Chapman, Mélanie Courtot, Vasa Curcin, Johann Eder, Mark Elliot, Katrina Exter, Carole Goble, Martin Golebiewski, Bron Kisler, Andreas Kremer, Simone Leo, Sheng Lin-Gibson, Anna Marsano, Marco Mattavelli, Josh Moore, Hiroki Nakae, Isabelle Perseil, Ayat Salman, James Sluka, Stian Soiland-Reyes, Caterina Strambio-De-Castillia, Michael Sussman, Jason R. Swedlow, Kurt Zatloukal, Jörg Geiger\",\"doi\":\"10.1002/lrh2.10365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by the quality of the samples, the experimental methods, and the data analysis. Therefore, a comprehensive and precise documentation of the pre-analytical conditions, the analytical procedures, and the data processing are essential to be able to assess the validity of the research results. With the increasing importance of the exchange, reuse, and sharing of data and samples, procedures are required that enable cross-organizational documentation, traceability, and non-repudiation. At present, this information on the provenance of samples and data is mostly either sparse, incomplete, or incoherent. Since there is no uniform framework, this information is usually only provided within the organization and not interoperably. At the same time, the collection and sharing of biological and environmental specimens increasingly require definition and documentation of benefit sharing and compliance to regulatory requirements rather than consideration of pure scientific needs. In this publication, we present an ongoing standardization effort to provide trustworthy machine-actionable documentation of the data lineage and specimens. We would like to invite experts from the biotechnology and biomedical fields to further contribute to the standard.</p>\",\"PeriodicalId\":43916,\"journal\":{\"name\":\"Learning Health Systems\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lrh2.10365\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Learning Health Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lrh2.10365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lrh2.10365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
Toward a common standard for data and specimen provenance in life sciences
Open and practical exchange, dissemination, and reuse of specimens and data have become a fundamental requirement for life sciences research. The quality of the data obtained and thus the findings and knowledge derived is thus significantly influenced by the quality of the samples, the experimental methods, and the data analysis. Therefore, a comprehensive and precise documentation of the pre-analytical conditions, the analytical procedures, and the data processing are essential to be able to assess the validity of the research results. With the increasing importance of the exchange, reuse, and sharing of data and samples, procedures are required that enable cross-organizational documentation, traceability, and non-repudiation. At present, this information on the provenance of samples and data is mostly either sparse, incomplete, or incoherent. Since there is no uniform framework, this information is usually only provided within the organization and not interoperably. At the same time, the collection and sharing of biological and environmental specimens increasingly require definition and documentation of benefit sharing and compliance to regulatory requirements rather than consideration of pure scientific needs. In this publication, we present an ongoing standardization effort to provide trustworthy machine-actionable documentation of the data lineage and specimens. We would like to invite experts from the biotechnology and biomedical fields to further contribute to the standard.