联合II型筛选方案下两个对数- logistic模型的贝叶斯估计

Pub Date : 2022-04-20 DOI:10.13052/jrss0974-8024.15110
Ranjita Pandey, Pulkit Srivastava
{"title":"联合II型筛选方案下两个对数- logistic模型的贝叶斯估计","authors":"Ranjita Pandey, Pulkit Srivastava","doi":"10.13052/jrss0974-8024.15110","DOIUrl":null,"url":null,"abstract":"The present paper, discusses classical and Bayesian estimation of unknown combined parameters of two different log-logistic models with common shape parameters and different scale parameters under a new type of censoring scheme known as joint type II censoring scheme. Maximum likelihood estimators are derived. Bayes estimates of parameters are proposed under different loss functions. Classical asymptotic confidence intervals along with the Bayesian credible intervals and Highest Posterior Density region are also constructed. Markov Chain Monte Carlo approximation method is used for simulating the theoretic results. Comparative assessment of the classical and the Bayes results are illustrated through a real archived dataset.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Estimation for the Two Log-Logistic Models Under Joint Type II Censoring Schemes\",\"authors\":\"Ranjita Pandey, Pulkit Srivastava\",\"doi\":\"10.13052/jrss0974-8024.15110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper, discusses classical and Bayesian estimation of unknown combined parameters of two different log-logistic models with common shape parameters and different scale parameters under a new type of censoring scheme known as joint type II censoring scheme. Maximum likelihood estimators are derived. Bayes estimates of parameters are proposed under different loss functions. Classical asymptotic confidence intervals along with the Bayesian credible intervals and Highest Posterior Density region are also constructed. Markov Chain Monte Carlo approximation method is used for simulating the theoretic results. Comparative assessment of the classical and the Bayes results are illustrated through a real archived dataset.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss0974-8024.15110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.15110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了两种具有相同形状参数和不同尺度参数的不同逻辑-逻辑模型在一种新型的联合II型滤波方案下未知组合参数的经典估计和贝叶斯估计。得到了极大似然估计量。给出了不同损失函数下参数的贝叶斯估计。构造了经典渐近置信区间、贝叶斯可信区间和最高后验密度区域。采用马尔可夫链蒙特卡罗近似法对理论结果进行了模拟。通过一个真实的存档数据集说明了经典和贝叶斯结果的比较评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Bayesian Estimation for the Two Log-Logistic Models Under Joint Type II Censoring Schemes
The present paper, discusses classical and Bayesian estimation of unknown combined parameters of two different log-logistic models with common shape parameters and different scale parameters under a new type of censoring scheme known as joint type II censoring scheme. Maximum likelihood estimators are derived. Bayes estimates of parameters are proposed under different loss functions. Classical asymptotic confidence intervals along with the Bayesian credible intervals and Highest Posterior Density region are also constructed. Markov Chain Monte Carlo approximation method is used for simulating the theoretic results. Comparative assessment of the classical and the Bayes results are illustrated through a real archived dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1