Paulina B. Ramírez, S. Machado, Surendra Singh, Rachael Plunkett, F. Calderón
{"title":"美国太平洋西北部小麦-土壤系统土壤有机碳对保水性的影响","authors":"Paulina B. Ramírez, S. Machado, Surendra Singh, Rachael Plunkett, F. Calderón","doi":"10.3389/fsoil.2023.1233886","DOIUrl":null,"url":null,"abstract":"Soil organic carbon (SOC) is considered a significant contributor to soil water retention. However, generalizations about the role of SOC in available water-holding capacity (AWHC) may have inaccurately portrayed this relationship. We aim to reexamine the relationship between SOC and water retention using the National Cooperative Soil Survey (NCSS) Database. We focus on regional soil groups within the Pacific Northwest wheat production region, including Haploxerolls, Argixerolls, Haplocambids, and Durixerolls. We evaluated 77 sites based on SOC, total nitrogen (TN), pH, texture, bulk density (BD), field capacity (FC), permanent wilting point (PWP), and AWHC. Our findings indicate that texture and BD were the most significant contributors to AWHC variation, while SOC played a secondary role in explaining this variation. Mid-infrared (MIR) spectroscopy coupled with a random forest (RF) algorithm was used to evaluate the importance of spectral bands in determining changes in FC and PWP. This analysis identified mineral bands related to inner-surface hydroxyl groups in kaolinite (3700 cm −1) and Si-O-Si overtones (1870 cm −1) as the most important spectral contributors to PWP. The water retention at FC was associated with organic absorbances relevant to soil aggregation, such as polysaccharide C–O (~1035 cm −1), while mineral bands were relatively less influential. This study highlights the need to reexamine the impact of SOC as well as the interaction between soil texture and compaction on soil water retention to elucidate the underlying mechanisms responsible for AWHC, thus providing insight into future drought adaptation strategies.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat–soil systems\",\"authors\":\"Paulina B. Ramírez, S. Machado, Surendra Singh, Rachael Plunkett, F. Calderón\",\"doi\":\"10.3389/fsoil.2023.1233886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil organic carbon (SOC) is considered a significant contributor to soil water retention. However, generalizations about the role of SOC in available water-holding capacity (AWHC) may have inaccurately portrayed this relationship. We aim to reexamine the relationship between SOC and water retention using the National Cooperative Soil Survey (NCSS) Database. We focus on regional soil groups within the Pacific Northwest wheat production region, including Haploxerolls, Argixerolls, Haplocambids, and Durixerolls. We evaluated 77 sites based on SOC, total nitrogen (TN), pH, texture, bulk density (BD), field capacity (FC), permanent wilting point (PWP), and AWHC. Our findings indicate that texture and BD were the most significant contributors to AWHC variation, while SOC played a secondary role in explaining this variation. Mid-infrared (MIR) spectroscopy coupled with a random forest (RF) algorithm was used to evaluate the importance of spectral bands in determining changes in FC and PWP. This analysis identified mineral bands related to inner-surface hydroxyl groups in kaolinite (3700 cm −1) and Si-O-Si overtones (1870 cm −1) as the most important spectral contributors to PWP. The water retention at FC was associated with organic absorbances relevant to soil aggregation, such as polysaccharide C–O (~1035 cm −1), while mineral bands were relatively less influential. This study highlights the need to reexamine the impact of SOC as well as the interaction between soil texture and compaction on soil water retention to elucidate the underlying mechanisms responsible for AWHC, thus providing insight into future drought adaptation strategies.\",\"PeriodicalId\":73107,\"journal\":{\"name\":\"Frontiers in soil science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in soil science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fsoil.2023.1233886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in soil science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsoil.2023.1233886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat–soil systems
Soil organic carbon (SOC) is considered a significant contributor to soil water retention. However, generalizations about the role of SOC in available water-holding capacity (AWHC) may have inaccurately portrayed this relationship. We aim to reexamine the relationship between SOC and water retention using the National Cooperative Soil Survey (NCSS) Database. We focus on regional soil groups within the Pacific Northwest wheat production region, including Haploxerolls, Argixerolls, Haplocambids, and Durixerolls. We evaluated 77 sites based on SOC, total nitrogen (TN), pH, texture, bulk density (BD), field capacity (FC), permanent wilting point (PWP), and AWHC. Our findings indicate that texture and BD were the most significant contributors to AWHC variation, while SOC played a secondary role in explaining this variation. Mid-infrared (MIR) spectroscopy coupled with a random forest (RF) algorithm was used to evaluate the importance of spectral bands in determining changes in FC and PWP. This analysis identified mineral bands related to inner-surface hydroxyl groups in kaolinite (3700 cm −1) and Si-O-Si overtones (1870 cm −1) as the most important spectral contributors to PWP. The water retention at FC was associated with organic absorbances relevant to soil aggregation, such as polysaccharide C–O (~1035 cm −1), while mineral bands were relatively less influential. This study highlights the need to reexamine the impact of SOC as well as the interaction between soil texture and compaction on soil water retention to elucidate the underlying mechanisms responsible for AWHC, thus providing insight into future drought adaptation strategies.