{"title":"光电子用石墨烯等离子体","authors":"Lin Cui , Jingang Wang , Mengtao Sun","doi":"10.1016/j.revip.2021.100054","DOIUrl":null,"url":null,"abstract":"<div><p>Surface plasmon polaritons (SPPs) can achieve light transmission beyond the diffraction limit due to their special dispersion relationship. As a novel two-dimensional material, graphene has attracted extensive attention in recent years because of its unique band structure, excellent electronic and optical properties, and ability to support SPPs transmission on its surface. Graphene surface plasmon polaritons (GSPPs) are characterized by high carrier mobility, strong localization, low consumption and high tunability. It has functional and future applications in the transmission of optical knowledge, photodetectors, surface plasmon waveguides, metamaterials and nanolasers.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"6 ","pages":"Article 100054"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2021.100054","citationCount":"47","resultStr":"{\"title\":\"Graphene plasmon for optoelectronics\",\"authors\":\"Lin Cui , Jingang Wang , Mengtao Sun\",\"doi\":\"10.1016/j.revip.2021.100054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface plasmon polaritons (SPPs) can achieve light transmission beyond the diffraction limit due to their special dispersion relationship. As a novel two-dimensional material, graphene has attracted extensive attention in recent years because of its unique band structure, excellent electronic and optical properties, and ability to support SPPs transmission on its surface. Graphene surface plasmon polaritons (GSPPs) are characterized by high carrier mobility, strong localization, low consumption and high tunability. It has functional and future applications in the transmission of optical knowledge, photodetectors, surface plasmon waveguides, metamaterials and nanolasers.</p></div>\",\"PeriodicalId\":37875,\"journal\":{\"name\":\"Reviews in Physics\",\"volume\":\"6 \",\"pages\":\"Article 100054\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.revip.2021.100054\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405428321000034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428321000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Surface plasmon polaritons (SPPs) can achieve light transmission beyond the diffraction limit due to their special dispersion relationship. As a novel two-dimensional material, graphene has attracted extensive attention in recent years because of its unique band structure, excellent electronic and optical properties, and ability to support SPPs transmission on its surface. Graphene surface plasmon polaritons (GSPPs) are characterized by high carrier mobility, strong localization, low consumption and high tunability. It has functional and future applications in the transmission of optical knowledge, photodetectors, surface plasmon waveguides, metamaterials and nanolasers.
期刊介绍:
Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.