在深度学习系统中驯服超参数

Q3 Computer Science Operating Systems Review (ACM) Pub Date : 2019-07-25 DOI:10.1145/3352020.3352029
Luo Mai, A. Koliousis, Guo Li, A. Brabete, P. Pietzuch
{"title":"在深度学习系统中驯服超参数","authors":"Luo Mai, A. Koliousis, Guo Li, A. Brabete, P. Pietzuch","doi":"10.1145/3352020.3352029","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) systems expose many tuning parameters (\"hyper-parameters\") that affect the performance and accuracy of trained models. Increasingly users struggle to configure hyper-parameters, and a substantial portion of time is spent tuning them empirically. We argue that future DL systems should be designed to help manage hyper-parameters. We describe how a distributed DL system can (i) remove the impact of hyper-parameters on both performance and accuracy, thus making it easier to decide on a good setting, and (ii) support more powerful dynamic policies for adapting hyper-parameters, which take monitored training metrics into account. We report results from prototype implementations that show the practicality of DL system designs that are hyper-parameter-friendly.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"53 1","pages":"52 - 58"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3352020.3352029","citationCount":"17","resultStr":"{\"title\":\"Taming Hyper-parameters in Deep Learning Systems\",\"authors\":\"Luo Mai, A. Koliousis, Guo Li, A. Brabete, P. Pietzuch\",\"doi\":\"10.1145/3352020.3352029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) systems expose many tuning parameters (\\\"hyper-parameters\\\") that affect the performance and accuracy of trained models. Increasingly users struggle to configure hyper-parameters, and a substantial portion of time is spent tuning them empirically. We argue that future DL systems should be designed to help manage hyper-parameters. We describe how a distributed DL system can (i) remove the impact of hyper-parameters on both performance and accuracy, thus making it easier to decide on a good setting, and (ii) support more powerful dynamic policies for adapting hyper-parameters, which take monitored training metrics into account. We report results from prototype implementations that show the practicality of DL system designs that are hyper-parameter-friendly.\",\"PeriodicalId\":38935,\"journal\":{\"name\":\"Operating Systems Review (ACM)\",\"volume\":\"53 1\",\"pages\":\"52 - 58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3352020.3352029\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operating Systems Review (ACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3352020.3352029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3352020.3352029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 17

摘要

深度学习(DL)系统暴露了许多调节参数(“超参数”),这些参数会影响训练模型的性能和准确性。越来越多的用户难以配置超参数,并且大量的时间都花在了经验调优上。我们认为,未来的深度学习系统应该设计成帮助管理超参数。我们描述了分布式深度学习系统如何(i)消除超参数对性能和准确性的影响,从而使其更容易决定一个好的设置,以及(ii)支持更强大的动态策略来适应超参数,这些超参数将监控的训练指标考虑在内。我们报告了原型实现的结果,显示了超参数友好的DL系统设计的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Taming Hyper-parameters in Deep Learning Systems
Deep learning (DL) systems expose many tuning parameters ("hyper-parameters") that affect the performance and accuracy of trained models. Increasingly users struggle to configure hyper-parameters, and a substantial portion of time is spent tuning them empirically. We argue that future DL systems should be designed to help manage hyper-parameters. We describe how a distributed DL system can (i) remove the impact of hyper-parameters on both performance and accuracy, thus making it easier to decide on a good setting, and (ii) support more powerful dynamic policies for adapting hyper-parameters, which take monitored training metrics into account. We report results from prototype implementations that show the practicality of DL system designs that are hyper-parameter-friendly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
期刊最新文献
Disaggregated GPU Acceleration for Serverless Applications Navigating Performance-Efficiency Tradeoffs in Serverless Computing: Deduplication to the Rescue! Using Local Cache Coherence for Disaggregated Memory Systems Make It Real: An End-to-End Implementation of A Physically Disaggregated Data Center Memory disaggregation: why now and what are the challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1