用热分析方法研究了氧化钴的粒度和形貌对甲烷热响应的影响

IF 0.8 Q4 INSTRUMENTS & INSTRUMENTATION Journal of Sensors and Sensor Systems Pub Date : 2021-02-24 DOI:10.5194/JSSS-10-37-2021
O. Yurchenko, H. Pernau, L. Engel, B. Bierer, M. Jägle, J. Wöllenstein
{"title":"用热分析方法研究了氧化钴的粒度和形貌对甲烷热响应的影响","authors":"O. Yurchenko, H. Pernau, L. Engel, B. Bierer, M. Jägle, J. Wöllenstein","doi":"10.5194/JSSS-10-37-2021","DOIUrl":null,"url":null,"abstract":"Abstract. Differential thermal analysis (DTA) was used to examine the effect of the particle size and morphology of cobalt (III/IV) oxide ( Co3O4 ) on its thermal response under exposure to methane (1 vol % in dry synthetic air), which is a relevant gas for the detection of combustible gases. The DTA response results from the catalytic oxidation of methane, and its characteristics should correlate with the pellistor response. Co3O4 samples differing in particle size and morphology were produced by ball milling (top-down technique) or were synthesized from precursor molecules by precipitation (bottom-up technique). The investigations carried out in dry air and a temperature range between 250 and 450  ∘ C reveal that both particle size and particle shape have a considerable effect on thermal response, since the resulting layer structures and the associated surface area available for gas interaction differ. The Co3O4 catalyst, with small particles and an irregular shape, exhibits significantly higher response than milled Co3O4 samples. Comparison of DTA with the mass spectroscopy signal of CO2 evolved by the reaction verified a certain analogy between DTA measurements and the response produced by a pellistor.","PeriodicalId":17167,"journal":{"name":"Journal of Sensors and Sensor Systems","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis\",\"authors\":\"O. Yurchenko, H. Pernau, L. Engel, B. Bierer, M. Jägle, J. Wöllenstein\",\"doi\":\"10.5194/JSSS-10-37-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Differential thermal analysis (DTA) was used to examine the effect of the particle size and morphology of cobalt (III/IV) oxide ( Co3O4 ) on its thermal response under exposure to methane (1 vol % in dry synthetic air), which is a relevant gas for the detection of combustible gases. The DTA response results from the catalytic oxidation of methane, and its characteristics should correlate with the pellistor response. Co3O4 samples differing in particle size and morphology were produced by ball milling (top-down technique) or were synthesized from precursor molecules by precipitation (bottom-up technique). The investigations carried out in dry air and a temperature range between 250 and 450  ∘ C reveal that both particle size and particle shape have a considerable effect on thermal response, since the resulting layer structures and the associated surface area available for gas interaction differ. The Co3O4 catalyst, with small particles and an irregular shape, exhibits significantly higher response than milled Co3O4 samples. Comparison of DTA with the mass spectroscopy signal of CO2 evolved by the reaction verified a certain analogy between DTA measurements and the response produced by a pellistor.\",\"PeriodicalId\":17167,\"journal\":{\"name\":\"Journal of Sensors and Sensor Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensors and Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/JSSS-10-37-2021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensors and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/JSSS-10-37-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 4

摘要

摘要采用差热分析(DTA)研究了钴(III/IV)氧化物(Co3O4)的粒度和形貌对其暴露于甲烷(干燥合成空气中1vol %)下热响应的影响,甲烷是检测可燃气体的相关气体。DTA反应是由甲烷的催化氧化引起的,其特征应该与造纸机反应相关。不同粒径和形态的Co3O4样品通过球磨(自上而下的技术)或前体分子通过沉淀(自下而上的技术)合成。在干燥空气和250至450°C的温度范围内进行的调查显示,颗粒大小和颗粒形状对热反应都有相当大的影响,因为产生的层结构和相关的气体相互作用表面积不同。颗粒小、形状不规则的Co3O4催化剂的响应率明显高于研磨后的Co3O4样品。将DTA与反应产生的CO2的质谱信号进行比较,证实了DTA测量结果与造粒器产生的响应具有一定的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis
Abstract. Differential thermal analysis (DTA) was used to examine the effect of the particle size and morphology of cobalt (III/IV) oxide ( Co3O4 ) on its thermal response under exposure to methane (1 vol % in dry synthetic air), which is a relevant gas for the detection of combustible gases. The DTA response results from the catalytic oxidation of methane, and its characteristics should correlate with the pellistor response. Co3O4 samples differing in particle size and morphology were produced by ball milling (top-down technique) or were synthesized from precursor molecules by precipitation (bottom-up technique). The investigations carried out in dry air and a temperature range between 250 and 450  ∘ C reveal that both particle size and particle shape have a considerable effect on thermal response, since the resulting layer structures and the associated surface area available for gas interaction differ. The Co3O4 catalyst, with small particles and an irregular shape, exhibits significantly higher response than milled Co3O4 samples. Comparison of DTA with the mass spectroscopy signal of CO2 evolved by the reaction verified a certain analogy between DTA measurements and the response produced by a pellistor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sensors and Sensor Systems
Journal of Sensors and Sensor Systems INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.30
自引率
10.00%
发文量
26
审稿时长
23 weeks
期刊介绍: Journal of Sensors and Sensor Systems (JSSS) is an international open-access journal dedicated to science, application, and advancement of sensors and sensors as part of measurement systems. The emphasis is on sensor principles and phenomena, measuring systems, sensor technologies, and applications. The goal of JSSS is to provide a platform for scientists and professionals in academia – as well as for developers, engineers, and users – to discuss new developments and advancements in sensors and sensor systems.
期刊最新文献
Human activity recognition system using wearable accelerometers for classification of leg movements: a first, detailed approach Rapid characterisation of mixtures of hydrogen and natural gas by means of ultrasonic time-delay estimation Extraction of nanometer-scale displacements from noisy signals at frequencies down to 1 mHz obtained by differential laser Doppler vibrometry Concatenated Bragg grating fiber-optic sensors for simultaneous measurement of curvature, temperature, and axial pressure Concept, simulation, and fabrication of inverted grating structures for surface plasmon resonance sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1