机器学习和正则化技术确定匈牙利各县的外国直接投资

Q2 Social Sciences Danube Pub Date : 2022-12-01 DOI:10.2478/danb-2022-0017
Devesh Singh, M. Turała
{"title":"机器学习和正则化技术确定匈牙利各县的外国直接投资","authors":"Devesh Singh, M. Turała","doi":"10.2478/danb-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract Recent studies show regional factors play an important role to attract Foreign Direct Investment (FDI) and, the performance of these factors varies within the country. Therefore, it is important to develop a measurement system to analyse the insight of these FDI factors. In this study, we used the regularization method with machine learning to get insight into the FDI determinants at the regional level. We used 18-years post-socialist period data at the county level from Hungary and applied a machine learning algorithm on different methods of regressions such as a linear, ridge, lasso, and elastic net. We analyse the relation of two dependent variables, the total amount of FDI inflow in a county and disparity of FDI inflow in companies within the county, and used urbanization, GDP per capita, labour productivity, market share of the companies, agglomeration of industries, and growth rate of the companies as predictors. Our results show that the elastic net is the best method to determine the predictive performance of FDI at the regional level.","PeriodicalId":38400,"journal":{"name":"Danube","volume":"13 1","pages":"269 - 291"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning and Regularization Technique to Determine Foreign Direct Investment in Hungarian Counties\",\"authors\":\"Devesh Singh, M. Turała\",\"doi\":\"10.2478/danb-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent studies show regional factors play an important role to attract Foreign Direct Investment (FDI) and, the performance of these factors varies within the country. Therefore, it is important to develop a measurement system to analyse the insight of these FDI factors. In this study, we used the regularization method with machine learning to get insight into the FDI determinants at the regional level. We used 18-years post-socialist period data at the county level from Hungary and applied a machine learning algorithm on different methods of regressions such as a linear, ridge, lasso, and elastic net. We analyse the relation of two dependent variables, the total amount of FDI inflow in a county and disparity of FDI inflow in companies within the county, and used urbanization, GDP per capita, labour productivity, market share of the companies, agglomeration of industries, and growth rate of the companies as predictors. Our results show that the elastic net is the best method to determine the predictive performance of FDI at the regional level.\",\"PeriodicalId\":38400,\"journal\":{\"name\":\"Danube\",\"volume\":\"13 1\",\"pages\":\"269 - 291\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Danube\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/danb-2022-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Danube","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/danb-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要近年来的研究表明,区域因素在吸引外国直接投资(FDI)方面发挥着重要作用,而这些因素在不同国家的表现各不相同。因此,建立一个衡量体系来分析这些FDI因素的洞察力是很重要的。在本研究中,我们使用机器学习的正则化方法来深入了解区域层面的FDI决定因素。我们使用了匈牙利后社会主义时期18年的县级数据,并将机器学习算法应用于不同的回归方法,如线性回归、脊回归、套索回归和弹性网回归。本文分析了县域FDI流入总量与县域内企业FDI流入差异这两个因变量之间的关系,并以城镇化、人均GDP、劳动生产率、企业市场占有率、产业集聚和企业增长率作为预测变量。研究结果表明,弹性网络是确定区域FDI预测绩效的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning and Regularization Technique to Determine Foreign Direct Investment in Hungarian Counties
Abstract Recent studies show regional factors play an important role to attract Foreign Direct Investment (FDI) and, the performance of these factors varies within the country. Therefore, it is important to develop a measurement system to analyse the insight of these FDI factors. In this study, we used the regularization method with machine learning to get insight into the FDI determinants at the regional level. We used 18-years post-socialist period data at the county level from Hungary and applied a machine learning algorithm on different methods of regressions such as a linear, ridge, lasso, and elastic net. We analyse the relation of two dependent variables, the total amount of FDI inflow in a county and disparity of FDI inflow in companies within the county, and used urbanization, GDP per capita, labour productivity, market share of the companies, agglomeration of industries, and growth rate of the companies as predictors. Our results show that the elastic net is the best method to determine the predictive performance of FDI at the regional level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Danube
Danube Social Sciences-Law
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
23 weeks
期刊最新文献
Legal Gap in Refugee Protection in Non-Signatory Countries: An Evidence from Indonesia Legal Aspects of Virtual Assets Regulation in Ukraine System Management and Improvement of Payment Planning Processes in Production Engineering Does the Education of Mothers Affect Their Experience pf Motherhood and Parenthood? Selected Aspects in the Czech Republic Public Administration Effectiveness of the Agro-Trade between Ukraine and the Slovak Republic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1