{"title":"可持续经济增长的分布式时滞能量模型的稳定性和Hopf分岔分析","authors":"M. Ferrara, M. Gangemi, L. Guerrini, B. Pansera","doi":"10.1478/AAPP.981A2","DOIUrl":null,"url":null,"abstract":"This paper examines the consequences of including distributed delays in an energy model. The stability behaviour of the resulting equilibrium for our dynamic system is analysed, including models with Dirac, weak and strong kernels. Applying the Hopf bifurcation theorem we determine conditions under which limit cycle motion is born in such models. The results indicate that distributed delays have an ambivalent impact on the dynamical behaviour of systems, either stabilizing or destabilizing them.","PeriodicalId":43431,"journal":{"name":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stability and Hopf bifurcation analysis of a distributed time delay energy model for sustainable economic growth\",\"authors\":\"M. Ferrara, M. Gangemi, L. Guerrini, B. Pansera\",\"doi\":\"10.1478/AAPP.981A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the consequences of including distributed delays in an energy model. The stability behaviour of the resulting equilibrium for our dynamic system is analysed, including models with Dirac, weak and strong kernels. Applying the Hopf bifurcation theorem we determine conditions under which limit cycle motion is born in such models. The results indicate that distributed delays have an ambivalent impact on the dynamical behaviour of systems, either stabilizing or destabilizing them.\",\"PeriodicalId\":43431,\"journal\":{\"name\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1478/AAPP.981A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atti Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche Matematiche e Naturali","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1478/AAPP.981A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Stability and Hopf bifurcation analysis of a distributed time delay energy model for sustainable economic growth
This paper examines the consequences of including distributed delays in an energy model. The stability behaviour of the resulting equilibrium for our dynamic system is analysed, including models with Dirac, weak and strong kernels. Applying the Hopf bifurcation theorem we determine conditions under which limit cycle motion is born in such models. The results indicate that distributed delays have an ambivalent impact on the dynamical behaviour of systems, either stabilizing or destabilizing them.
期刊介绍:
This journal is of a multi- and inter-disciplinary nature and covers a broad range of fields including mathematics, computer science, physics, chemistry, biology, earth sciences, and their intersection. History of science is also included within the topics addressed by the journal. The transactions of the Pelorian Academy started out as periodic news sheets containing the notes presented by the members of the Divisions into which the Academy has been and still is organized, according to subject areas. The publication of these notes for the Division (“Classe”) of Mathematical, Physical and Natural Sciences is the responsibility of the Editorial Committee, which is composed of the Director of the division with the role of Chairman, the Vice-Director, the Secretary and two or more other members. Besides original research articles, the journal also accepts texts from conferences and invited talks held in the Academy. These contributions are published in a different section of the journal. In addition to the regular issues, single monographic supplements are occasionally published which assemble reports and communications presented at congresses, symposia, seminars, study meetings and other scientific events organized by the Academy or under its patronage. Since 2004 these transactions have been published online in the form of an open access electronic journal.