{"title":"基于时间的分类模型对增材制造过程的全面综述","authors":"Maria Koltsaki, Maria Mavri","doi":"10.1089/3dp.2022.0167","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing crisis caused by the COVID-19 pandemic produced major reshuffles on the world map, bringing imbalance, uncertainty, and accumulated stress. Due to supply chain disruptions, the need for innovation has emerged both as a priority and a necessity and three-dimensional printing (3DP) proved to be a primary, smart, effective, and innovative additive manufacturing (AM) method. AM refers to the direct fabrication of complex geometries, using a computer-aided design (CAD) model or a three-dimensional scanner output. This article presents a literature review of AM technologies, chronologically sorted, and proposes a multilevel classification model. The suggested research approach appears a triangular methodology that encompasses the current ISO/ASTM 52900:2021 report. The first objective of this article is to form two double-level classification models of AM processes, depending on the technology and material factors. The second objective is to clarify in which of the proposed categories each AM process is included; and the third one is to investigate if the proposed taxonomy is related to the time spot, in which AM processes were invented. The contribution of this article lies in determining the factors that are crucial for the growth of AM ecosystem. The novelty of the proposed classification lies in the definition of an optimal option for each industrial application based on the different AM processes, the variety of materials, and the evolution of technology over the years. In this way, investing in AM is more systematic and less risky.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880673/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Overview of Additive Manufacturing Processes Through a Time-Based Classification Model.\",\"authors\":\"Maria Koltsaki, Maria Mavri\",\"doi\":\"10.1089/3dp.2022.0167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ongoing crisis caused by the COVID-19 pandemic produced major reshuffles on the world map, bringing imbalance, uncertainty, and accumulated stress. Due to supply chain disruptions, the need for innovation has emerged both as a priority and a necessity and three-dimensional printing (3DP) proved to be a primary, smart, effective, and innovative additive manufacturing (AM) method. AM refers to the direct fabrication of complex geometries, using a computer-aided design (CAD) model or a three-dimensional scanner output. This article presents a literature review of AM technologies, chronologically sorted, and proposes a multilevel classification model. The suggested research approach appears a triangular methodology that encompasses the current ISO/ASTM 52900:2021 report. The first objective of this article is to form two double-level classification models of AM processes, depending on the technology and material factors. The second objective is to clarify in which of the proposed categories each AM process is included; and the third one is to investigate if the proposed taxonomy is related to the time spot, in which AM processes were invented. The contribution of this article lies in determining the factors that are crucial for the growth of AM ecosystem. The novelty of the proposed classification lies in the definition of an optimal option for each industrial application based on the different AM processes, the variety of materials, and the evolution of technology over the years. In this way, investing in AM is more systematic and less risky.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2022.0167\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A Comprehensive Overview of Additive Manufacturing Processes Through a Time-Based Classification Model.
The ongoing crisis caused by the COVID-19 pandemic produced major reshuffles on the world map, bringing imbalance, uncertainty, and accumulated stress. Due to supply chain disruptions, the need for innovation has emerged both as a priority and a necessity and three-dimensional printing (3DP) proved to be a primary, smart, effective, and innovative additive manufacturing (AM) method. AM refers to the direct fabrication of complex geometries, using a computer-aided design (CAD) model or a three-dimensional scanner output. This article presents a literature review of AM technologies, chronologically sorted, and proposes a multilevel classification model. The suggested research approach appears a triangular methodology that encompasses the current ISO/ASTM 52900:2021 report. The first objective of this article is to form two double-level classification models of AM processes, depending on the technology and material factors. The second objective is to clarify in which of the proposed categories each AM process is included; and the third one is to investigate if the proposed taxonomy is related to the time spot, in which AM processes were invented. The contribution of this article lies in determining the factors that are crucial for the growth of AM ecosystem. The novelty of the proposed classification lies in the definition of an optimal option for each industrial application based on the different AM processes, the variety of materials, and the evolution of technology over the years. In this way, investing in AM is more systematic and less risky.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.