西瓜熟度检测器的近红外光谱

Edwin R. Arboleda, Kimberly M. Parazo, C. Pareja
{"title":"西瓜熟度检测器的近红外光谱","authors":"Edwin R. Arboleda, Kimberly M. Parazo, C. Pareja","doi":"10.14710/jtsiskom.2020.13744","DOIUrl":null,"url":null,"abstract":"This study aimed to design and develop a watermelon ripeness detector using Near-Infrared Spectroscopy (NIRS). The research problem being solved in this study is developing a prototype wherein the watermelon ripeness can be detected without the need to open it. This detector will save customers from buying unripe watermelon and the farmers from harvesting an unripe watermelon. The researchers attempted to use the NIRS technique in determining the ripeness level of watermelon as it is widely used in the agricultural sector with high-speed analysis. The project was composed of Raspberry Pi Zero W as the microprocessor unit connected to input and output devices, such as the NIR spectral sensor and the OLED display. It was programmed by Python 3 IDLE. The detector scanned a total of 200 watermelon samples. These samples were grouped as 60 % for the training dataset, 20 % for testing, and another 20 % for evaluation. The data sets were collected and are subjected to the Support Vector Machine (SVM) algorithm. Overall, experimental results showed that the detector could correctly classify both unripe and ripe watermelons with 92.5 % accuracy.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"8 1","pages":"317-322"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Watermelon ripeness detector using near infrared spectroscopy\",\"authors\":\"Edwin R. Arboleda, Kimberly M. Parazo, C. Pareja\",\"doi\":\"10.14710/jtsiskom.2020.13744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to design and develop a watermelon ripeness detector using Near-Infrared Spectroscopy (NIRS). The research problem being solved in this study is developing a prototype wherein the watermelon ripeness can be detected without the need to open it. This detector will save customers from buying unripe watermelon and the farmers from harvesting an unripe watermelon. The researchers attempted to use the NIRS technique in determining the ripeness level of watermelon as it is widely used in the agricultural sector with high-speed analysis. The project was composed of Raspberry Pi Zero W as the microprocessor unit connected to input and output devices, such as the NIR spectral sensor and the OLED display. It was programmed by Python 3 IDLE. The detector scanned a total of 200 watermelon samples. These samples were grouped as 60 % for the training dataset, 20 % for testing, and another 20 % for evaluation. The data sets were collected and are subjected to the Support Vector Machine (SVM) algorithm. Overall, experimental results showed that the detector could correctly classify both unripe and ripe watermelons with 92.5 % accuracy.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"8 1\",\"pages\":\"317-322\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.2020.13744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2020.13744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究旨在利用近红外光谱(NIRS)技术设计和研制西瓜成熟度检测器。本研究要解决的研究问题是开发一种无需打开西瓜就能检测西瓜成熟度的样机。这种检测器可以避免消费者购买未成熟的西瓜,也可以避免农民收割未成熟的西瓜。由于近红外光谱技术在农业部门的高速分析中得到了广泛应用,因此研究人员试图利用近红外光谱技术来确定西瓜的成熟度。该项目由树莓派Zero W作为微处理器单元,连接近红外光谱传感器、OLED显示屏等输入输出设备。它是由Python 3 IDLE编程的。探测器一共扫描了200个西瓜样本。这些样本分为60%用于训练数据集,20%用于测试,另外20%用于评估。收集数据集,并进行支持向量机(SVM)算法。实验结果表明,该检测器对未熟西瓜和熟西瓜的分类准确率均为92.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Watermelon ripeness detector using near infrared spectroscopy
This study aimed to design and develop a watermelon ripeness detector using Near-Infrared Spectroscopy (NIRS). The research problem being solved in this study is developing a prototype wherein the watermelon ripeness can be detected without the need to open it. This detector will save customers from buying unripe watermelon and the farmers from harvesting an unripe watermelon. The researchers attempted to use the NIRS technique in determining the ripeness level of watermelon as it is widely used in the agricultural sector with high-speed analysis. The project was composed of Raspberry Pi Zero W as the microprocessor unit connected to input and output devices, such as the NIR spectral sensor and the OLED display. It was programmed by Python 3 IDLE. The detector scanned a total of 200 watermelon samples. These samples were grouped as 60 % for the training dataset, 20 % for testing, and another 20 % for evaluation. The data sets were collected and are subjected to the Support Vector Machine (SVM) algorithm. Overall, experimental results showed that the detector could correctly classify both unripe and ripe watermelons with 92.5 % accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
期刊最新文献
TATOPSIS: A decision support system for selecting a major in university with a two-way approach and TOPSIS Regional clustering based on economic potential with a modified fuzzy k-prototypes algorithm for village developing target determination River water level measurement system using Sobel edge detection method Classification of beneficiaries for the rehabilitation of uninhabitable houses using the K-Nearest Neighbor algorithm Sequence-based prediction of protein-protein interaction using autocorrelation features and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1