{"title":"一种基于脑电图的方法来解码创作过程中的认知因素","authors":"Y. Yin, H. Zuo, P. Childs","doi":"10.1017/S0890060423000057","DOIUrl":null,"url":null,"abstract":"Abstract Neurotechnology has been applied to gain insights on creativity-related cognitive factors. Prior research has identified relations between cognitive factors and creativity qualitatively; while quantitative relations, such as the relative importance of cognitive factors and creativity, have not been fully determined. Therefore, taking the creative design process as an example, this study using electroencephalography (EEG) aims to objectively identify how creativity-related cognitive factors of retrieval, recall, association, and combination contribute to creativity. The theoretical basis for an EEG-based decoding method to objectively identify which cognitive factors occur in a creative process is developed. Thirty participants were recruited for a practical study to verify the reliability of the decoding method. Based on the methodology, relationships between the relative importance level of the cognitive factor and creative output quality levels were detected. Results indicated that the occurrence of recall and association are reported with a high reliability level by the decoding method. The results also indicated that association is the dominant cognitive factor for higher creative output quality levels. Recall is the dominant cognitive factor for lower creative output quality levels.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An EEG-based method to decode cognitive factors in creative processes\",\"authors\":\"Y. Yin, H. Zuo, P. Childs\",\"doi\":\"10.1017/S0890060423000057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Neurotechnology has been applied to gain insights on creativity-related cognitive factors. Prior research has identified relations between cognitive factors and creativity qualitatively; while quantitative relations, such as the relative importance of cognitive factors and creativity, have not been fully determined. Therefore, taking the creative design process as an example, this study using electroencephalography (EEG) aims to objectively identify how creativity-related cognitive factors of retrieval, recall, association, and combination contribute to creativity. The theoretical basis for an EEG-based decoding method to objectively identify which cognitive factors occur in a creative process is developed. Thirty participants were recruited for a practical study to verify the reliability of the decoding method. Based on the methodology, relationships between the relative importance level of the cognitive factor and creative output quality levels were detected. Results indicated that the occurrence of recall and association are reported with a high reliability level by the decoding method. The results also indicated that association is the dominant cognitive factor for higher creative output quality levels. Recall is the dominant cognitive factor for lower creative output quality levels.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060423000057\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060423000057","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An EEG-based method to decode cognitive factors in creative processes
Abstract Neurotechnology has been applied to gain insights on creativity-related cognitive factors. Prior research has identified relations between cognitive factors and creativity qualitatively; while quantitative relations, such as the relative importance of cognitive factors and creativity, have not been fully determined. Therefore, taking the creative design process as an example, this study using electroencephalography (EEG) aims to objectively identify how creativity-related cognitive factors of retrieval, recall, association, and combination contribute to creativity. The theoretical basis for an EEG-based decoding method to objectively identify which cognitive factors occur in a creative process is developed. Thirty participants were recruited for a practical study to verify the reliability of the decoding method. Based on the methodology, relationships between the relative importance level of the cognitive factor and creative output quality levels were detected. Results indicated that the occurrence of recall and association are reported with a high reliability level by the decoding method. The results also indicated that association is the dominant cognitive factor for higher creative output quality levels. Recall is the dominant cognitive factor for lower creative output quality levels.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.