船舶传感器数据质量:一种时间序列预测方法,用于补偿水传感器速度测量中的数据丢失和漂移

Q2 Engineering Designs Pub Date : 2023-03-22 DOI:10.3390/designs7020046
Kiriakos Alexiou, E. Pariotis, H. Leligou
{"title":"船舶传感器数据质量:一种时间序列预测方法,用于补偿水传感器速度测量中的数据丢失和漂移","authors":"Kiriakos Alexiou, E. Pariotis, H. Leligou","doi":"10.3390/designs7020046","DOIUrl":null,"url":null,"abstract":"In this paper, four machine learning algorithms are examined regarding their effectiveness in dealing with a complete lack of sensor drift values for a crucial parameter for ship performance evaluation, such as a ship’s speed through water (STW). A basic Linear Regression algorithm, a more sophisticated ensemble model (Random Forest) and two modern Recurrent Neural Networks i.e., Long Short-Term Memory (LSTM) and Neural Basis Expansion Analysis for Time Series (N-Beats) are evaluated. A computational algorithm written in python language with the use of the Darts library was developed for this scope. The results regarding the selected parameter (STW) are provided on a real- or near-to-real-time basis. The algorithms were able to estimate the speed through water in a progressive manner, with no initial values needed, making it possible to replace the complete missingness of the label data. A physical model developed with the simulation platform of Siemens Simcenter Amesim is used to calculate the ship STW under the real operating conditions of a banker ship type during a period of six months. These theoretically obtained values are used as reference values (“ground-truth” values) to evaluate the performance of each of the four machine learning algorithms examined.","PeriodicalId":53150,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor Data Quality in Ships: A Time Series Forecasting Approach to Compensate for Missing Data and Drift in Measurements of Speed through Water Sensors\",\"authors\":\"Kiriakos Alexiou, E. Pariotis, H. Leligou\",\"doi\":\"10.3390/designs7020046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, four machine learning algorithms are examined regarding their effectiveness in dealing with a complete lack of sensor drift values for a crucial parameter for ship performance evaluation, such as a ship’s speed through water (STW). A basic Linear Regression algorithm, a more sophisticated ensemble model (Random Forest) and two modern Recurrent Neural Networks i.e., Long Short-Term Memory (LSTM) and Neural Basis Expansion Analysis for Time Series (N-Beats) are evaluated. A computational algorithm written in python language with the use of the Darts library was developed for this scope. The results regarding the selected parameter (STW) are provided on a real- or near-to-real-time basis. The algorithms were able to estimate the speed through water in a progressive manner, with no initial values needed, making it possible to replace the complete missingness of the label data. A physical model developed with the simulation platform of Siemens Simcenter Amesim is used to calculate the ship STW under the real operating conditions of a banker ship type during a period of six months. These theoretically obtained values are used as reference values (“ground-truth” values) to evaluate the performance of each of the four machine learning algorithms examined.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7020046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.3390/designs7020046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,检验了四种机器学习算法在处理船舶性能评估的关键参数(如船舶通过水的速度(STW))完全缺乏传感器漂移值时的有效性。评估了一个基本的线性回归算法、一个更复杂的集成模型(随机森林)和两个现代递归神经网络,即长短期记忆(LSTM)和时间序列的神经基扩展分析(N-Beats)。使用Darts库,用python语言编写了一个计算算法。关于所选参数(STW)的结果是在实时或接近实时的基础上提供的。该算法能够以渐进的方式估计通过水的速度,不需要初始值,从而可以替换标签数据的完全缺失。利用西门子Simcenter Amesim仿真平台开发的物理模型,计算了银行船型实际工况下6个月的船舶STW。这些理论上获得的值被用作参考值(“基本事实”值),以评估所检查的四种机器学习算法中的每一种的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensor Data Quality in Ships: A Time Series Forecasting Approach to Compensate for Missing Data and Drift in Measurements of Speed through Water Sensors
In this paper, four machine learning algorithms are examined regarding their effectiveness in dealing with a complete lack of sensor drift values for a crucial parameter for ship performance evaluation, such as a ship’s speed through water (STW). A basic Linear Regression algorithm, a more sophisticated ensemble model (Random Forest) and two modern Recurrent Neural Networks i.e., Long Short-Term Memory (LSTM) and Neural Basis Expansion Analysis for Time Series (N-Beats) are evaluated. A computational algorithm written in python language with the use of the Darts library was developed for this scope. The results regarding the selected parameter (STW) are provided on a real- or near-to-real-time basis. The algorithms were able to estimate the speed through water in a progressive manner, with no initial values needed, making it possible to replace the complete missingness of the label data. A physical model developed with the simulation platform of Siemens Simcenter Amesim is used to calculate the ship STW under the real operating conditions of a banker ship type during a period of six months. These theoretically obtained values are used as reference values (“ground-truth” values) to evaluate the performance of each of the four machine learning algorithms examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Mechanical Transmissions with Convex–Concave Multipair Contact of Teeth in Precessional Gearing Design and Operational Assessment of a Railroad Track Robot for Railcar Undercarriage Condition Inspection Computational Investigation of the Fluidic Properties of Triply Periodic Minimal Surface (TPMS) Structures in Tissue Engineering Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1