{"title":"俄罗斯高北极Severnaya Zemlya冰川变化遥感(1965–2021)和浪涌型冰川识别","authors":"Holly Wytiahlowsky, C. Stokes, D. Evans","doi":"10.1017/jog.2023.60","DOIUrl":null,"url":null,"abstract":"Glaciers in the Russian High Arctic have undergone accelerated mass loss due to atmospheric and oceanic warming in the Barents–Kara Sea region. Most studies have concentrated on the western Barents–Kara sector, despite evidence of accelerating mass loss as far east as Severnaya Zemlya. However, long-term trends in glacier change on Severnaya Zemlya are largely unknown and this record may be complicated by surge-type glaciers. Here, we present a long-term assessment of glacier change (1965–2021) on Severnaya Zemlya and a new inventory of surge-type glaciers using declassified spy-satellite photography (KH-7/9 Hexagon) and optical satellite imagery (ASTER, Sentinel-2A, Landsat-4/5 TM and 8 OLI). Glacier area reduced from 17 053 km2 in 1965 to 16 275 in 2021 (−5%; mean: −18%, max: −100%), with areal shrinkage most pronounced at land-terminating glaciers on southern Severnaya Zemlya, where there is a recent (post-2010s) increase in summer atmospheric temperatures. We find that surging may be more widespread than previously thought, with three glaciers classified confirmed as surge-type, eight as likely to have surged and nine as possible, comprising 11% of Severnaya Zemlya's 190 glaciers (37% by area). Under continued warming, we anticipate accelerated retreat and increased likelihood of surging as basal thermal regimes shift.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remote sensing of glacier change (1965–2021) and identification of surge-type glaciers on Severnaya Zemlya, Russian High Arctic\",\"authors\":\"Holly Wytiahlowsky, C. Stokes, D. Evans\",\"doi\":\"10.1017/jog.2023.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glaciers in the Russian High Arctic have undergone accelerated mass loss due to atmospheric and oceanic warming in the Barents–Kara Sea region. Most studies have concentrated on the western Barents–Kara sector, despite evidence of accelerating mass loss as far east as Severnaya Zemlya. However, long-term trends in glacier change on Severnaya Zemlya are largely unknown and this record may be complicated by surge-type glaciers. Here, we present a long-term assessment of glacier change (1965–2021) on Severnaya Zemlya and a new inventory of surge-type glaciers using declassified spy-satellite photography (KH-7/9 Hexagon) and optical satellite imagery (ASTER, Sentinel-2A, Landsat-4/5 TM and 8 OLI). Glacier area reduced from 17 053 km2 in 1965 to 16 275 in 2021 (−5%; mean: −18%, max: −100%), with areal shrinkage most pronounced at land-terminating glaciers on southern Severnaya Zemlya, where there is a recent (post-2010s) increase in summer atmospheric temperatures. We find that surging may be more widespread than previously thought, with three glaciers classified confirmed as surge-type, eight as likely to have surged and nine as possible, comprising 11% of Severnaya Zemlya's 190 glaciers (37% by area). Under continued warming, we anticipate accelerated retreat and increased likelihood of surging as basal thermal regimes shift.\",\"PeriodicalId\":15981,\"journal\":{\"name\":\"Journal of Glaciology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Glaciology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/jog.2023.60\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.60","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Remote sensing of glacier change (1965–2021) and identification of surge-type glaciers on Severnaya Zemlya, Russian High Arctic
Glaciers in the Russian High Arctic have undergone accelerated mass loss due to atmospheric and oceanic warming in the Barents–Kara Sea region. Most studies have concentrated on the western Barents–Kara sector, despite evidence of accelerating mass loss as far east as Severnaya Zemlya. However, long-term trends in glacier change on Severnaya Zemlya are largely unknown and this record may be complicated by surge-type glaciers. Here, we present a long-term assessment of glacier change (1965–2021) on Severnaya Zemlya and a new inventory of surge-type glaciers using declassified spy-satellite photography (KH-7/9 Hexagon) and optical satellite imagery (ASTER, Sentinel-2A, Landsat-4/5 TM and 8 OLI). Glacier area reduced from 17 053 km2 in 1965 to 16 275 in 2021 (−5%; mean: −18%, max: −100%), with areal shrinkage most pronounced at land-terminating glaciers on southern Severnaya Zemlya, where there is a recent (post-2010s) increase in summer atmospheric temperatures. We find that surging may be more widespread than previously thought, with three glaciers classified confirmed as surge-type, eight as likely to have surged and nine as possible, comprising 11% of Severnaya Zemlya's 190 glaciers (37% by area). Under continued warming, we anticipate accelerated retreat and increased likelihood of surging as basal thermal regimes shift.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.