Mn-Ni-Cr合金在压缩过程中的热变形

IF 1.1 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Iranian Journal of Materials Science and Engineering Pub Date : 2020-03-10 DOI:10.22068/IJMSE.17.1.102
M. Sadeghi, M. Hadi, O. Bayat, H. Karimi
{"title":"Mn-Ni-Cr合金在压缩过程中的热变形","authors":"M. Sadeghi, M. Hadi, O. Bayat, H. Karimi","doi":"10.22068/IJMSE.17.1.102","DOIUrl":null,"url":null,"abstract":"In this paper a constitutive equation was considered for the isothermal hot compression test of the Mn-Ni-Cr alloy. The hot compression test was performed in the strain rate range of 0.001-0.1 s-1 and deformation temperature was varied from 700 to 900 °C. A considerable reduction in flow stress was observed regardless of the strain rate when temperature was increased from 700 to 750 °C. DTA and XRD evaluation revealed that the removal of Mn3Cr phase and formation of the single solid solution phase were the reason for the flow stress reduction. At the low deformation temperature (700°C) and the high strain rate (0.1 s-1), a partially recrystallized microstructure was observed; this was such that with increasing the temperature and decreasing the strain rate, a recrystallized microstructure was completed. Also, the relationships between flow stress, strain rate and deformation temperature were addressed by the Zener-Holloman parameter in the exponent type with the hot deformation activation energy of 301.07 KJ/mol. Finally, the constitutive equation was proposed for predicting the flow stress at various strain rates and temperatures.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hot Deformation of the Mn-Ni-Cr Alloy During Compression\",\"authors\":\"M. Sadeghi, M. Hadi, O. Bayat, H. Karimi\",\"doi\":\"10.22068/IJMSE.17.1.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a constitutive equation was considered for the isothermal hot compression test of the Mn-Ni-Cr alloy. The hot compression test was performed in the strain rate range of 0.001-0.1 s-1 and deformation temperature was varied from 700 to 900 °C. A considerable reduction in flow stress was observed regardless of the strain rate when temperature was increased from 700 to 750 °C. DTA and XRD evaluation revealed that the removal of Mn3Cr phase and formation of the single solid solution phase were the reason for the flow stress reduction. At the low deformation temperature (700°C) and the high strain rate (0.1 s-1), a partially recrystallized microstructure was observed; this was such that with increasing the temperature and decreasing the strain rate, a recrystallized microstructure was completed. Also, the relationships between flow stress, strain rate and deformation temperature were addressed by the Zener-Holloman parameter in the exponent type with the hot deformation activation energy of 301.07 KJ/mol. Finally, the constitutive equation was proposed for predicting the flow stress at various strain rates and temperatures.\",\"PeriodicalId\":14603,\"journal\":{\"name\":\"Iranian Journal of Materials Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJMSE.17.1.102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.17.1.102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文考虑了锰镍铬合金等温热压缩试验的本构方程。热压缩试验在0.001-0.1s-1的应变速率范围内进行,变形温度在700至900°C之间变化。当温度从700°C增加到750°C时,无论应变速率如何,都观察到流动应力显著降低。DTA和XRD评估表明,Mn3Cr相的去除和单一固溶体相的形成是降低流动应力的原因。在低变形温度(700°C)和高应变速率(0.1s-1)下,观察到部分再结晶的微观结构;这使得随着温度的升高和应变速率的降低,完成了再结晶的微观结构。此外,用热变形激活能为301.07KJ/mol的指数型Zener-Holloman参数求解了流动应力、应变速率和变形温度之间的关系。最后,提出了预测不同应变速率和温度下流动应力的本构方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hot Deformation of the Mn-Ni-Cr Alloy During Compression
In this paper a constitutive equation was considered for the isothermal hot compression test of the Mn-Ni-Cr alloy. The hot compression test was performed in the strain rate range of 0.001-0.1 s-1 and deformation temperature was varied from 700 to 900 °C. A considerable reduction in flow stress was observed regardless of the strain rate when temperature was increased from 700 to 750 °C. DTA and XRD evaluation revealed that the removal of Mn3Cr phase and formation of the single solid solution phase were the reason for the flow stress reduction. At the low deformation temperature (700°C) and the high strain rate (0.1 s-1), a partially recrystallized microstructure was observed; this was such that with increasing the temperature and decreasing the strain rate, a recrystallized microstructure was completed. Also, the relationships between flow stress, strain rate and deformation temperature were addressed by the Zener-Holloman parameter in the exponent type with the hot deformation activation energy of 301.07 KJ/mol. Finally, the constitutive equation was proposed for predicting the flow stress at various strain rates and temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Materials Science and Engineering
Iranian Journal of Materials Science and Engineering MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.30
自引率
10.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Study of the Effect of Acid-base Character of the Lamellar Double Hydroxides "Zn3Al-CO3" and of the "Ghassoul" Clay on Their Redox Potential and Antimicrobial Activities Dry Sliding Friction and Wear of SnPb-Solder Affected Copper against Stainless Steel Counter Surface The Effect of Tin Concentration on Microstructural, Optical and Electrical Properties of ITO Nanoparticles Synthesized Using Green Method Physical and Structural Characteristics of Gel-derived Glasses Prepared via Different Drying Procedures Assessment of Structure, Dielectric and Gamma-Shielding Properties of Chemically Treated Natural Kaolinitic Clay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1