基于非对称稳健回归方法的股票实现方差预测

IF 0.8 4区 经济学 Q3 ECONOMICS Bulletin of Economic Research Pub Date : 2023-03-29 DOI:10.1111/boer.12392
Yaojie Zhang, Mengxi He, Yuqi Zhao, Xianfeng Hao
{"title":"基于非对称稳健回归方法的股票实现方差预测","authors":"Yaojie Zhang,&nbsp;Mengxi He,&nbsp;Yuqi Zhao,&nbsp;Xianfeng Hao","doi":"10.1111/boer.12392","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces an asymmetric robust weighted least squares (ARLS) approach to improve the forecasting performance of the heterogeneous autoregressive model for realized volatility. The ARLS approach down-weights extreme observations to limit the bad influence of outliers on the estimated parameters. Compared with existing robust regression methods, our model further takes into account the asymmetry of outliers using a class of kernel functions. Out-of-sample results show the ARLS approach can generate more accurate forecasts of the S&amp;P 500 index realized volatility in the statistical and economic senses. The model that considers the asymmetry of outliers gains superior performance among various robust regression competitors. The forecasting improvements also hold in other international stock markets. More importantly, the source of the predictive ability of the ARLS model comes from the less biased and more efficient parameter estimation.</p>","PeriodicalId":46233,"journal":{"name":"Bulletin of Economic Research","volume":"75 4","pages":"1022-1047"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting stock realized variance based on an asymmetric robust regression approach\",\"authors\":\"Yaojie Zhang,&nbsp;Mengxi He,&nbsp;Yuqi Zhao,&nbsp;Xianfeng Hao\",\"doi\":\"10.1111/boer.12392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces an asymmetric robust weighted least squares (ARLS) approach to improve the forecasting performance of the heterogeneous autoregressive model for realized volatility. The ARLS approach down-weights extreme observations to limit the bad influence of outliers on the estimated parameters. Compared with existing robust regression methods, our model further takes into account the asymmetry of outliers using a class of kernel functions. Out-of-sample results show the ARLS approach can generate more accurate forecasts of the S&amp;P 500 index realized volatility in the statistical and economic senses. The model that considers the asymmetry of outliers gains superior performance among various robust regression competitors. The forecasting improvements also hold in other international stock markets. More importantly, the source of the predictive ability of the ARLS model comes from the less biased and more efficient parameter estimation.</p>\",\"PeriodicalId\":46233,\"journal\":{\"name\":\"Bulletin of Economic Research\",\"volume\":\"75 4\",\"pages\":\"1022-1047\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Economic Research\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/boer.12392\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Economic Research","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/boer.12392","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种非对称鲁棒加权最小二乘(ARLS)方法来提高异构自回归模型对实际波动率的预测性能。ARLS方法降低了极端观测值的权重,以限制异常值对估计参数的不良影响。与现有的鲁棒回归方法相比,我们的模型利用一类核函数进一步考虑了离群点的不对称性。样本外结果表明,ARLS方法可以在统计和经济意义上更准确地预测标准普尔500指数的实现波动率。该模型考虑了异常值的不对称性,在各种鲁棒回归竞争者中获得了更好的性能。其他国际股市的预测也有所改善。更重要的是,ARLS模型预测能力的来源是更小的偏差和更有效的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting stock realized variance based on an asymmetric robust regression approach

This paper introduces an asymmetric robust weighted least squares (ARLS) approach to improve the forecasting performance of the heterogeneous autoregressive model for realized volatility. The ARLS approach down-weights extreme observations to limit the bad influence of outliers on the estimated parameters. Compared with existing robust regression methods, our model further takes into account the asymmetry of outliers using a class of kernel functions. Out-of-sample results show the ARLS approach can generate more accurate forecasts of the S&P 500 index realized volatility in the statistical and economic senses. The model that considers the asymmetry of outliers gains superior performance among various robust regression competitors. The forecasting improvements also hold in other international stock markets. More importantly, the source of the predictive ability of the ARLS model comes from the less biased and more efficient parameter estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
56
期刊介绍: The Bulletin of Economic Research is an international journal publishing articles across the entire field of economics, econometrics and economic history. The Bulletin contains original theoretical, applied and empirical work which makes a substantial contribution to the subject and is of broad interest to economists. We welcome submissions in all fields and, with the Bulletin expanding in new areas, we particularly encourage submissions in the fields of experimental economics, financial econometrics and health economics. In addition to full-length articles the Bulletin publishes refereed shorter articles, notes and comments; authoritative survey articles in all areas of economics and special themed issues.
期刊最新文献
Issue Information On optimal betting strategies with multiple mutually exclusive outcomes Learning at university Household assets and business cycle fluctuations An empirical investigation of the mitigating effect of debt on overinvestment as shareholder rights vary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1