{"title":"瑞典南部榴辉岩和变辉长岩中的锆石U–Pb Hf同位素数据揭示了一个共同的长期演化和富集来源","authors":"A. Petersson, L. Tual","doi":"10.1080/11035897.2020.1822438","DOIUrl":null,"url":null,"abstract":"ABSTRACT Several orogenies have shaped the bedrock of southern Sweden. While mafic intrusions represent significant sources of information for reconstructing geodynamics and crustal evolution, the characterization of the various generations of such intrusions in Sweden remains limited. We report in situ zircon U–Pb ages and Hf isotope data from a Fe-Ti eclogite and a coronitic metagabbro from the Eastern Segment in southern Sweden. Crystallisation ages at 1683 ± 17 Ma of the eclogite suggest affiliation with the surrounding 1730–1660 Ma Transscandinavian Igneous Belt intrusions that dominate the Eastern Segment. Secondary zircon growth and Pb-loss in the eclogite sample at 1459 ± 44 Ma and the crystallisation of the metagabbro at 1431 ± 26 Ma overlap and are related to magmatic activity during the Hallandian orogeny. Zircon Hf isotope signatures with chondritic and sub-chondritic values at ~1683 Ma and ~1431 Ma, respectively, correspond to an enriched (or mildly depleted) source in line with a “Mixed Svecofennian Crustal Reservoir”. These isotope signatures are more enriched than those in the surrounding gneisses. Zircon isotope data from the herein analysed zircon grains indicate that the eclogite and metagabbro had an enriched mafic source in the mid to lower crust, or within the subcontinental lithospheric mantle below Fennoscandia.","PeriodicalId":55094,"journal":{"name":"Gff","volume":"142 1","pages":"253 - 266"},"PeriodicalIF":1.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/11035897.2020.1822438","citationCount":"1","resultStr":"{\"title\":\"Zircon U–Pb-Hf isotope data in eclogite and metagabbro from southern Sweden reveal a common long-lived evolution and enriched source\",\"authors\":\"A. Petersson, L. Tual\",\"doi\":\"10.1080/11035897.2020.1822438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Several orogenies have shaped the bedrock of southern Sweden. While mafic intrusions represent significant sources of information for reconstructing geodynamics and crustal evolution, the characterization of the various generations of such intrusions in Sweden remains limited. We report in situ zircon U–Pb ages and Hf isotope data from a Fe-Ti eclogite and a coronitic metagabbro from the Eastern Segment in southern Sweden. Crystallisation ages at 1683 ± 17 Ma of the eclogite suggest affiliation with the surrounding 1730–1660 Ma Transscandinavian Igneous Belt intrusions that dominate the Eastern Segment. Secondary zircon growth and Pb-loss in the eclogite sample at 1459 ± 44 Ma and the crystallisation of the metagabbro at 1431 ± 26 Ma overlap and are related to magmatic activity during the Hallandian orogeny. Zircon Hf isotope signatures with chondritic and sub-chondritic values at ~1683 Ma and ~1431 Ma, respectively, correspond to an enriched (or mildly depleted) source in line with a “Mixed Svecofennian Crustal Reservoir”. These isotope signatures are more enriched than those in the surrounding gneisses. Zircon isotope data from the herein analysed zircon grains indicate that the eclogite and metagabbro had an enriched mafic source in the mid to lower crust, or within the subcontinental lithospheric mantle below Fennoscandia.\",\"PeriodicalId\":55094,\"journal\":{\"name\":\"Gff\",\"volume\":\"142 1\",\"pages\":\"253 - 266\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/11035897.2020.1822438\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gff\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/11035897.2020.1822438\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gff","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/11035897.2020.1822438","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Zircon U–Pb-Hf isotope data in eclogite and metagabbro from southern Sweden reveal a common long-lived evolution and enriched source
ABSTRACT Several orogenies have shaped the bedrock of southern Sweden. While mafic intrusions represent significant sources of information for reconstructing geodynamics and crustal evolution, the characterization of the various generations of such intrusions in Sweden remains limited. We report in situ zircon U–Pb ages and Hf isotope data from a Fe-Ti eclogite and a coronitic metagabbro from the Eastern Segment in southern Sweden. Crystallisation ages at 1683 ± 17 Ma of the eclogite suggest affiliation with the surrounding 1730–1660 Ma Transscandinavian Igneous Belt intrusions that dominate the Eastern Segment. Secondary zircon growth and Pb-loss in the eclogite sample at 1459 ± 44 Ma and the crystallisation of the metagabbro at 1431 ± 26 Ma overlap and are related to magmatic activity during the Hallandian orogeny. Zircon Hf isotope signatures with chondritic and sub-chondritic values at ~1683 Ma and ~1431 Ma, respectively, correspond to an enriched (or mildly depleted) source in line with a “Mixed Svecofennian Crustal Reservoir”. These isotope signatures are more enriched than those in the surrounding gneisses. Zircon isotope data from the herein analysed zircon grains indicate that the eclogite and metagabbro had an enriched mafic source in the mid to lower crust, or within the subcontinental lithospheric mantle below Fennoscandia.
期刊介绍:
GFF is the journal of the Geological Society of Sweden. It is an international scientific journal that publishes papers in English covering the whole field of geology and palaeontology, i.e. petrology, mineralogy, stratigraphy, systematic palaeontology, palaeogeography, historical geology and Quaternary geology. Systematic descriptions of fossils, minerals and rocks are an important part of GFF''s publishing record. Papers on regional or local geology should deal with Balto-Scandian or Northern European geology, or with geologically related areas. Papers on geophysics, geochemistry, biogeochemistry, climatology and hydrology should have a geological context. Descriptions of new methods (analytical, instrumental or numerical), should be relevant to the broad scope of the journal. Review articles are welcome, and may be solicited occasionally. Thematic issues are also possible.