技术腰果果液防治埃及伊蚊的生态毒理学评价(双翅目:库蚊科)

IF 1.7 Q3 ECOLOGY Ecologies Pub Date : 2022-05-31 DOI:10.3390/ecologies3020013
Márcia Ramos Jorge, F. Merey, B. Crispim, Fábio Kummrow, A. Barufatti, Fabiana Gomes da Silva Dantas, Kelly M P Oliveira, E. J. Arruda
{"title":"技术腰果果液防治埃及伊蚊的生态毒理学评价(双翅目:库蚊科)","authors":"Márcia Ramos Jorge, F. Merey, B. Crispim, Fábio Kummrow, A. Barufatti, Fabiana Gomes da Silva Dantas, Kelly M P Oliveira, E. J. Arruda","doi":"10.3390/ecologies3020013","DOIUrl":null,"url":null,"abstract":"The development of new insecticides for vector control that are toxicologically safe and eco-friendly (such as those obtained from industrial by-products) is an important public health concern. Previous research has shown that the obtained tCNSL (technical cashew nutshell liquid) + NatCNSLS (sodium tCNSL sulfonate mixture) emulsion displayed both surfactant properties and larvicidal activity (LC50-24 h 110.6 mg/L). Thus, the emulsion is considered a promising alternative product for the control of Aedes aegypti. The goal of this study was an ecotoxicological evaluation of the tCNSL + NatCNSLS mixture emulsion and its components. In addition, we compared the toxicity of the tCNSL + NatCNSLS mixture emulsion with toxicity data from larvicide currently recommended by the World Health Organization (WHO). Ecotoxicological tests were performed to assess acute toxicity, phytotoxicity, cytotoxicity, genotoxicity, and mutagenicity using Daphnia similis, Pseudokirchneriella subcapitata, Oreochromis niloticus, Allium cepa, and Salmonella enterica serovar Typhimurium. Regarding acute toxicity, D. similis was the most sensitive test organism for the three evaluated products, followed by P. subcapitata and O. niloticus. The highest acute toxicity product was tCNSL. The tCNSL + NatCNSLS mixture emulsion did not show cytotoxic, genotoxic, or mutagenic effects, and showed low acute toxicity to D. similis. In addition, the tCNSL + NatCNSLS mixture emulsion presented a lower or similar toxicological classification to the larvicides recommended by the WHO. Therefore, ecotoxicological tests suggest that the tCNSL + NatCNSLS mixture emulsion can be considered a larvicide environmentally safe way to control Ae. aegypti.","PeriodicalId":72866,"journal":{"name":"Ecologies","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ecotoxicological Evaluation of Products Obtained from Technical Cashew Nutshell Liquid (tCNSL) Proposed as Larvicide to Control Aedes aegypti (Diptera: Culicidae)\",\"authors\":\"Márcia Ramos Jorge, F. Merey, B. Crispim, Fábio Kummrow, A. Barufatti, Fabiana Gomes da Silva Dantas, Kelly M P Oliveira, E. J. Arruda\",\"doi\":\"10.3390/ecologies3020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of new insecticides for vector control that are toxicologically safe and eco-friendly (such as those obtained from industrial by-products) is an important public health concern. Previous research has shown that the obtained tCNSL (technical cashew nutshell liquid) + NatCNSLS (sodium tCNSL sulfonate mixture) emulsion displayed both surfactant properties and larvicidal activity (LC50-24 h 110.6 mg/L). Thus, the emulsion is considered a promising alternative product for the control of Aedes aegypti. The goal of this study was an ecotoxicological evaluation of the tCNSL + NatCNSLS mixture emulsion and its components. In addition, we compared the toxicity of the tCNSL + NatCNSLS mixture emulsion with toxicity data from larvicide currently recommended by the World Health Organization (WHO). Ecotoxicological tests were performed to assess acute toxicity, phytotoxicity, cytotoxicity, genotoxicity, and mutagenicity using Daphnia similis, Pseudokirchneriella subcapitata, Oreochromis niloticus, Allium cepa, and Salmonella enterica serovar Typhimurium. Regarding acute toxicity, D. similis was the most sensitive test organism for the three evaluated products, followed by P. subcapitata and O. niloticus. The highest acute toxicity product was tCNSL. The tCNSL + NatCNSLS mixture emulsion did not show cytotoxic, genotoxic, or mutagenic effects, and showed low acute toxicity to D. similis. In addition, the tCNSL + NatCNSLS mixture emulsion presented a lower or similar toxicological classification to the larvicides recommended by the WHO. Therefore, ecotoxicological tests suggest that the tCNSL + NatCNSLS mixture emulsion can be considered a larvicide environmentally safe way to control Ae. aegypti.\",\"PeriodicalId\":72866,\"journal\":{\"name\":\"Ecologies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ecologies3020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecologies3020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

开发毒理学安全和环保的新的病媒控制杀虫剂(如从工业副产品中获得的杀虫剂)是一个重要的公共卫生问题。先前的研究表明,所获得的tCNSL(工业腰果果壳液)+NatCNSLS(tCNSL磺酸钠混合物)乳液显示出表面活性剂性质和杀幼虫活性(LC50-24 h 110.6mg/L)。因此,该乳液被认为是控制埃及伊蚊的一种有前景的替代产品。本研究的目的是对tCNSL+NatCNSLS混合乳液及其成分进行生态毒理学评价。此外,我们将tCNSL+NatCNSLS混合乳剂的毒性与世界卫生组织(世界卫生组织)目前推荐的杀幼虫毒性数据进行了比较。使用类似瑞香、亚皮塔假鸡尾藻、尼罗罗非鱼、洋葱和鼠伤寒沙门氏菌血清型进行生态毒理学试验,以评估急性毒性、植物毒性、细胞毒性、遗传毒性和致突变性。就急性毒性而言,对三种评估产品最敏感的测试生物是相似D.similis,其次是亚皮塔P.subcapita和尼罗O.niloticus。急性毒性最高的产品是tCNSL。tCNSL+NatCNSLS混合乳液没有表现出细胞毒性、基因毒性或诱变作用,并且对类似D.similis表现出低急性毒性。此外,与世界卫生组织推荐的杀幼虫剂相比,tCNSL+NatCNSLS混合乳剂的毒理学分类更低或相似。因此,生态毒理学试验表明,tCNSL+NatCNSLS混合乳液可以被认为是一种对环境安全的杀幼虫方法来控制埃及伊蚊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ecotoxicological Evaluation of Products Obtained from Technical Cashew Nutshell Liquid (tCNSL) Proposed as Larvicide to Control Aedes aegypti (Diptera: Culicidae)
The development of new insecticides for vector control that are toxicologically safe and eco-friendly (such as those obtained from industrial by-products) is an important public health concern. Previous research has shown that the obtained tCNSL (technical cashew nutshell liquid) + NatCNSLS (sodium tCNSL sulfonate mixture) emulsion displayed both surfactant properties and larvicidal activity (LC50-24 h 110.6 mg/L). Thus, the emulsion is considered a promising alternative product for the control of Aedes aegypti. The goal of this study was an ecotoxicological evaluation of the tCNSL + NatCNSLS mixture emulsion and its components. In addition, we compared the toxicity of the tCNSL + NatCNSLS mixture emulsion with toxicity data from larvicide currently recommended by the World Health Organization (WHO). Ecotoxicological tests were performed to assess acute toxicity, phytotoxicity, cytotoxicity, genotoxicity, and mutagenicity using Daphnia similis, Pseudokirchneriella subcapitata, Oreochromis niloticus, Allium cepa, and Salmonella enterica serovar Typhimurium. Regarding acute toxicity, D. similis was the most sensitive test organism for the three evaluated products, followed by P. subcapitata and O. niloticus. The highest acute toxicity product was tCNSL. The tCNSL + NatCNSLS mixture emulsion did not show cytotoxic, genotoxic, or mutagenic effects, and showed low acute toxicity to D. similis. In addition, the tCNSL + NatCNSLS mixture emulsion presented a lower or similar toxicological classification to the larvicides recommended by the WHO. Therefore, ecotoxicological tests suggest that the tCNSL + NatCNSLS mixture emulsion can be considered a larvicide environmentally safe way to control Ae. aegypti.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
期刊最新文献
Comparisons of Twelve Freshwater Mussel Bed Assemblages Quantitatively Sampled at a 15-year Interval in the Buffalo National River, Arkansas, USA Assessing the Impacts of Climate Change on the At-Risk Species Anaxyrus microscaphus (The Arizona Toad): A Local and Range-Wide Habitat Suitability Analysis Effects of Environmental Factors on Plant Productivity in the Mountain Grassland of the Mountain Zebra National Park, Eastern Cape, South Africa Soil Conditioning and Neighbor Identity Influence on Cycas Seedling Performance Artificial Light at Night (ALAN) Influences Understory Plant Traits through Ecological Processes: A Two-Year Experiment in a Rubber Plantation in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1