Pegah Fatehbasharzad , Samira Aliasghari , Ipak Shaterzadeh Tabrizi , Javed Ali Khan , Grzegorz Boczkaj
{"title":"微生物燃料电池在去除石油碳氢化合物污染物方面的应用综述","authors":"Pegah Fatehbasharzad , Samira Aliasghari , Ipak Shaterzadeh Tabrizi , Javed Ali Khan , Grzegorz Boczkaj","doi":"10.1016/j.wri.2022.100178","DOIUrl":null,"url":null,"abstract":"<div><p>Bioelectrochemical systems (BESs) are considered as the potential approaches to remediate the environments contaminated by hydrocarbons. This review addresses the application of BESs particularly microbial fuel cells (MFCs) in degradation of petroleum hydrocarbons, including BTEXs, from soil, water, wastewater and sediments. Details on reactor design and critical issues are discussed. Aspects on electrodes, redox mediators and membranes are evaluated, including economic feasibility. The microbial community is considered in detail. It can be concluded, that comparing to classic configurations, single-chamber air-cathode reactors are more cost-effective. Secondly, systems based on small-scale units are recommended for future developments.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"28 ","pages":"Article 100178"},"PeriodicalIF":4.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212371722000087/pdfft?md5=53dd12e49c1a0f82142a4a11bc6a3513&pid=1-s2.0-S2212371722000087-main.pdf","citationCount":"9","resultStr":"{\"title\":\"Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: A review\",\"authors\":\"Pegah Fatehbasharzad , Samira Aliasghari , Ipak Shaterzadeh Tabrizi , Javed Ali Khan , Grzegorz Boczkaj\",\"doi\":\"10.1016/j.wri.2022.100178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bioelectrochemical systems (BESs) are considered as the potential approaches to remediate the environments contaminated by hydrocarbons. This review addresses the application of BESs particularly microbial fuel cells (MFCs) in degradation of petroleum hydrocarbons, including BTEXs, from soil, water, wastewater and sediments. Details on reactor design and critical issues are discussed. Aspects on electrodes, redox mediators and membranes are evaluated, including economic feasibility. The microbial community is considered in detail. It can be concluded, that comparing to classic configurations, single-chamber air-cathode reactors are more cost-effective. Secondly, systems based on small-scale units are recommended for future developments.</p></div>\",\"PeriodicalId\":23714,\"journal\":{\"name\":\"Water Resources and Industry\",\"volume\":\"28 \",\"pages\":\"Article 100178\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000087/pdfft?md5=53dd12e49c1a0f82142a4a11bc6a3513&pid=1-s2.0-S2212371722000087-main.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources and Industry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212371722000087\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212371722000087","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: A review
Bioelectrochemical systems (BESs) are considered as the potential approaches to remediate the environments contaminated by hydrocarbons. This review addresses the application of BESs particularly microbial fuel cells (MFCs) in degradation of petroleum hydrocarbons, including BTEXs, from soil, water, wastewater and sediments. Details on reactor design and critical issues are discussed. Aspects on electrodes, redox mediators and membranes are evaluated, including economic feasibility. The microbial community is considered in detail. It can be concluded, that comparing to classic configurations, single-chamber air-cathode reactors are more cost-effective. Secondly, systems based on small-scale units are recommended for future developments.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry