Zhiyuan Ma, Qingbing Wang, Yuhua Wang, Zhaolong Li, Hong Zhang, Zhicheng Li
{"title":"具有nio型晶体结构的Ni0.5Fe0.5O1−xNx薄膜具有较高的锂存储性能","authors":"Zhiyuan Ma, Qingbing Wang, Yuhua Wang, Zhaolong Li, Hong Zhang, Zhicheng Li","doi":"10.1007/s11706-022-0624-6","DOIUrl":null,"url":null,"abstract":"<div><p>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li<sub>2</sub>NiO<sub>2</sub>, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li<sub>2</sub>NiO<sub>2</sub> and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni<sub>0.5</sub>Fe<sub>0.5</sub>O<sub>1−<i>x</i></sub>N<sub><i>x</i></sub> anode exhibits significantly enhanced reversible specific capacity (959 mAh·g<sup>−1</sup> at 0.3 A·g<sup>−1</sup>), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g<sup>−1</sup>). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"16 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure\",\"authors\":\"Zhiyuan Ma, Qingbing Wang, Yuhua Wang, Zhaolong Li, Hong Zhang, Zhicheng Li\",\"doi\":\"10.1007/s11706-022-0624-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li<sub>2</sub>NiO<sub>2</sub>, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li<sub>2</sub>NiO<sub>2</sub> and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni<sub>0.5</sub>Fe<sub>0.5</sub>O<sub>1−<i>x</i></sub>N<sub><i>x</i></sub> anode exhibits significantly enhanced reversible specific capacity (959 mAh·g<sup>−1</sup> at 0.3 A·g<sup>−1</sup>), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g<sup>−1</sup>). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-022-0624-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-022-0624-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High lithium storage performance of Ni0.5Fe0.5O1−xNx thin film with NiO-type crystal structure
The large voltage hysteresis of the NiO anode, which owes much to the intermediate product Li2NiO2, is one of the main obstacles to its practical application in lithium-ion batteries. In this work, we show that the incorporation of Fe- and N-ions in the NiO lattice can suppress the formation of intermediate product Li2NiO2 and thus greatly reduces the voltage hysteresis of the NiO anode from ∼1.2 to ∼0.9 V. In comparison with the pure NiO electrode, the Ni0.5Fe0.5O1−xNx anode exhibits significantly enhanced reversible specific capacity (959 mAh·g−1 at 0.3 A·g−1), cycling stability (capacity retention of 96.1% at 100th cycle relative to the second cycle) and rate capability (442 at 10 A·g−1). These results provide a practical method to enhance the lithium storage performance of the NiO anode and more importantly a new solution to the large voltage hysteresis of conversion-type anodes.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.