近似随机数以减少延迟

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2022-05-10 DOI:10.1515/itit-2021-0041
Syoki Kawaminami, Yukino Watanabe, S. Yamashita
{"title":"近似随机数以减少延迟","authors":"Syoki Kawaminami, Yukino Watanabe, S. Yamashita","doi":"10.1515/itit-2021-0041","DOIUrl":null,"url":null,"abstract":"Abstract Approximate Computing (AC) and Stochastic Computing (SC) have been studied as new computing paradigms to achieve energy-efficient designs for error-tolerant applications. The hardware cost of SC generally can be small compared to that of AC, but SC has not been applied to a wide range of applications as AC because SC needs very long cycles to use long random bit strings called Stochastic Numbers (SNs) when we need to maintain the desired precision. To mitigate this disadvantage of SC, we propose a new idea to approximate numbers represented by SNs; our idea is to use multiple SNs to represent one number. Indeed our method can shorten the length of SNs drastically while keeping the precision level compared to conventional SNs. We study two specific cases where we use two and three shorter bit-strings to represent a single conventional SN, which we call a dual-rail and a triple-rail SNs, respectively. We also discuss a general case when we use many SNs corresponding to a single conventional SNs. We also compare triple-rail, dual-rail and conventional SNs in terms of hardware overhead and calculation errors in this paper. From the comparison, we can conclude that our idea can be used to shorten the necessary cycles for SC.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating stochastic numbers to reduce latency\",\"authors\":\"Syoki Kawaminami, Yukino Watanabe, S. Yamashita\",\"doi\":\"10.1515/itit-2021-0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Approximate Computing (AC) and Stochastic Computing (SC) have been studied as new computing paradigms to achieve energy-efficient designs for error-tolerant applications. The hardware cost of SC generally can be small compared to that of AC, but SC has not been applied to a wide range of applications as AC because SC needs very long cycles to use long random bit strings called Stochastic Numbers (SNs) when we need to maintain the desired precision. To mitigate this disadvantage of SC, we propose a new idea to approximate numbers represented by SNs; our idea is to use multiple SNs to represent one number. Indeed our method can shorten the length of SNs drastically while keeping the precision level compared to conventional SNs. We study two specific cases where we use two and three shorter bit-strings to represent a single conventional SN, which we call a dual-rail and a triple-rail SNs, respectively. We also discuss a general case when we use many SNs corresponding to a single conventional SNs. We also compare triple-rail, dual-rail and conventional SNs in terms of hardware overhead and calculation errors in this paper. From the comparison, we can conclude that our idea can be used to shorten the necessary cycles for SC.\",\"PeriodicalId\":43953,\"journal\":{\"name\":\"IT-Information Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IT-Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/itit-2021-0041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2021-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

摘要近似计算(AC)和随机计算(SC)作为新的计算范式被研究,以实现容错应用的节能设计。与AC相比,SC的硬件成本通常可以很小,但SC并没有像AC那样广泛应用,因为当我们需要保持所需的精度时,SC需要很长的周期来使用称为随机数字(SNs)的长随机比特串。为了减轻SC的这一缺点,我们提出了一种新的想法来近似由sn表示的数字;我们的想法是使用多个SNs来代表一个数字。实际上,我们的方法可以大大缩短SNs的长度,同时保持与传统SNs相比的精度水平。我们研究了两种具体情况,其中我们使用两个和三个较短的位串来表示单个常规SN,我们分别称之为双轨和三轨SN。我们还讨论了一个一般情况下,当我们使用多个SNs对应于一个传统的SNs。本文还比较了三轨、双轨和传统SNs在硬件开销和计算误差方面的差异。通过比较,我们可以得出结论,我们的想法可以用来缩短SC的必要周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximating stochastic numbers to reduce latency
Abstract Approximate Computing (AC) and Stochastic Computing (SC) have been studied as new computing paradigms to achieve energy-efficient designs for error-tolerant applications. The hardware cost of SC generally can be small compared to that of AC, but SC has not been applied to a wide range of applications as AC because SC needs very long cycles to use long random bit strings called Stochastic Numbers (SNs) when we need to maintain the desired precision. To mitigate this disadvantage of SC, we propose a new idea to approximate numbers represented by SNs; our idea is to use multiple SNs to represent one number. Indeed our method can shorten the length of SNs drastically while keeping the precision level compared to conventional SNs. We study two specific cases where we use two and three shorter bit-strings to represent a single conventional SN, which we call a dual-rail and a triple-rail SNs, respectively. We also discuss a general case when we use many SNs corresponding to a single conventional SNs. We also compare triple-rail, dual-rail and conventional SNs in terms of hardware overhead and calculation errors in this paper. From the comparison, we can conclude that our idea can be used to shorten the necessary cycles for SC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1