{"title":"无溶剂芳香族克拉森重排法合成工业原料的连续流工艺开发","authors":"Nikola Petrovic, Sándor B. Ötvös, C. Oliver Kappe","doi":"10.1007/s41981-023-00275-z","DOIUrl":null,"url":null,"abstract":"<div><p>A high-temperature continuous flow protocol is reported for the intensified synthesis of an important industrial raw material via aromatic Claisen rearrangement of the corresponding diallyl ether precursor. The process takes advantage of solvent-free conditions, thereby maximizing productivity whilst reducing cost and environmental impact. By precise control over reaction temperature and residence times, a high-yielding and selective synthesis is achieved that ensures improved safety and scalability of the exothermic transformation compared with earlier batch methodologies.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-023-00275-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Continuous flow process development for the synthesis of an industrial raw material via solvent-free aromatic Claisen rearrangement\",\"authors\":\"Nikola Petrovic, Sándor B. Ötvös, C. Oliver Kappe\",\"doi\":\"10.1007/s41981-023-00275-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A high-temperature continuous flow protocol is reported for the intensified synthesis of an important industrial raw material via aromatic Claisen rearrangement of the corresponding diallyl ether precursor. The process takes advantage of solvent-free conditions, thereby maximizing productivity whilst reducing cost and environmental impact. By precise control over reaction temperature and residence times, a high-yielding and selective synthesis is achieved that ensures improved safety and scalability of the exothermic transformation compared with earlier batch methodologies.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41981-023-00275-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-023-00275-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00275-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Continuous flow process development for the synthesis of an industrial raw material via solvent-free aromatic Claisen rearrangement
A high-temperature continuous flow protocol is reported for the intensified synthesis of an important industrial raw material via aromatic Claisen rearrangement of the corresponding diallyl ether precursor. The process takes advantage of solvent-free conditions, thereby maximizing productivity whilst reducing cost and environmental impact. By precise control over reaction temperature and residence times, a high-yielding and selective synthesis is achieved that ensures improved safety and scalability of the exothermic transformation compared with earlier batch methodologies.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.