长期PM2.5和NO2暴露的地理编码和时空建模:墨西哥教师队列

IF 1 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Atmosfera Pub Date : 2021-12-17 DOI:10.20937/atm.53110
K. Cervantes-Martínez, H. Riojas-Rodríguez, C. Díaz-Avalos, H. Moreno-Macías, R. López‐Ridaura, D. Stern, Jorge Octavio Acosta-Montes, J. Texcalac-Sangrador
{"title":"长期PM2.5和NO2暴露的地理编码和时空建模:墨西哥教师队列","authors":"K. Cervantes-Martínez, H. Riojas-Rodríguez, C. Díaz-Avalos, H. Moreno-Macías, R. López‐Ridaura, D. Stern, Jorge Octavio Acosta-Montes, J. Texcalac-Sangrador","doi":"10.20937/atm.53110","DOIUrl":null,"url":null,"abstract":"Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in ~16,500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses of participants, and used secondary source information on geographical and meteorological variables as well as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 concentrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE=0.102 for PM2.5 and CV-RMSE=4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) mg/m3 of PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for estimating PM2.5 and NO2 exposure with high spatio-temporal resolution for epidemiological studies in the Mexico City Metropolitan Area.","PeriodicalId":55576,"journal":{"name":"Atmosfera","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geocoding and spatio-temporal modeling of long-term PM2.5 and NO2 exposure: the Mexican Teachers´ Cohort\",\"authors\":\"K. Cervantes-Martínez, H. Riojas-Rodríguez, C. Díaz-Avalos, H. Moreno-Macías, R. López‐Ridaura, D. Stern, Jorge Octavio Acosta-Montes, J. Texcalac-Sangrador\",\"doi\":\"10.20937/atm.53110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in ~16,500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses of participants, and used secondary source information on geographical and meteorological variables as well as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 concentrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE=0.102 for PM2.5 and CV-RMSE=4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) mg/m3 of PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for estimating PM2.5 and NO2 exposure with high spatio-temporal resolution for epidemiological studies in the Mexico City Metropolitan Area.\",\"PeriodicalId\":55576,\"journal\":{\"name\":\"Atmosfera\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosfera\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.20937/atm.53110\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosfera","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.20937/atm.53110","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

墨西哥空气污染的流行病学研究通常使用离参与者家最近的监测器测量的污染物环境浓度作为暴露指标,但这种方法没有考虑污染物的空间梯度,并忽略了城市内的人类流动。本研究旨在开发高分辨率的时空模型,用于预测墨西哥教师队列研究中约16500名参与者长期暴露于PM2.5和NO2的情况。我们对参与者的家庭和工作地址进行了地理编码,并使用地理和气象变量以及其他污染物的二次源信息来拟合两个能够预测2004-2019年期间每月PM2.5和NO2浓度的广义相加模型。这两个模型都通过10倍交叉验证进行了评估,并在样本外数据和无过拟合的情况下显示出较高的预测准确性(PM2.5的CV-RMSE=0.102,NO2的CV-RMSE=4.497)。在研究期间,参与者每月平均暴露于24.38(6.78)mg/m3的PM2.5和28.21(8.00)ppb的NO2。这些模型为墨西哥城大都会区的流行病学研究提供了一种具有高时空分辨率的PM2.5和NO2暴露估算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geocoding and spatio-temporal modeling of long-term PM2.5 and NO2 exposure: the Mexican Teachers´ Cohort
Epidemiological studies on air pollution in Mexico often use the environmental concentrations of pollutants as measured by monitors closest to the home of participants as exposure proxies, yet this approach does not account for the space gradients of pollutants and ignores intra-city human mobility. This study aimed to develop high-resolution spatial and temporal models for predicting long-term exposure to PM2.5 and NO2 in ~16,500 participants from the Mexican Teachers’ Cohort study. We geocoded the home and work addresses of participants, and used secondary source information on geographical and meteorological variables as well as other pollutants to fit two generalized additive models capable of predicting monthly PM2.5 and NO2 concentrations during the 2004-2019 period. Both models were evaluated through 10-fold cross-validation, and showed high predictive accuracy with out-of-sample data and no overfitting (CV-RMSE=0.102 for PM2.5 and CV-RMSE=4.497 for NO2). Participants were exposed to a monthly average of 24.38 (6.78) mg/m3 of PM2.5 and 28.21 (8.00) ppb of NO2 during the study period. These models offer a promising alternative for estimating PM2.5 and NO2 exposure with high spatio-temporal resolution for epidemiological studies in the Mexico City Metropolitan Area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosfera
Atmosfera 地学-气象与大气科学
CiteScore
2.20
自引率
0.00%
发文量
46
审稿时长
6 months
期刊介绍: ATMÓSFERA seeks contributions on theoretical, basic, empirical and applied research in all the areas of atmospheric sciences, with emphasis on meteorology, climatology, aeronomy, physics, chemistry, and aerobiology. Interdisciplinary contributions are also accepted; especially those related with oceanography, hydrology, climate variability and change, ecology, forestry, glaciology, agriculture, environmental pollution, and other topics related to economy and society as they are affected by atmospheric hazards.
期刊最新文献
Subsurface temperature change attributed to climate change at the northern latitude site of Kapuskasing, Canada Development of a CFD model to simulate the dispersion of atmospheric NH3 in a semi-open barn Using a hybrid approach for wind power forecasting in Northwestern Mexico Threats to tropical wetlands: Medio Queso Wetland as a case of degraded system Performance evaluation of the WRF model under different physical schemes for air quality purposes in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1