通过基于模型的系统开发实现系统设计和风险管理的集成

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL Systems Engineering Pub Date : 2022-10-06 DOI:10.1002/sys.21643
Y. Uludağ, Ersin Evin, Nazan Gözay Gürbüz
{"title":"通过基于模型的系统开发实现系统设计和风险管理的集成","authors":"Y. Uludağ, Ersin Evin, Nazan Gözay Gürbüz","doi":"10.1002/sys.21643","DOIUrl":null,"url":null,"abstract":"Model‐based systems engineering is a powerful methodology to develop safety‐critical systems. The use of the system model as a single source of truth for risk and dependability analysis results in a consistent and complete assessment. Besides, representation and logging of the assessment within the model result in a complete and up‐to‐date single source of information that can be used during the device certification as well. This paper aims to provide a comprehensive risk management SysML profile that includes interconnected safety analysis [functional hazard assessment (FHA), fault tree, and failure mode and effect analysis (FTA, FMEA)], control measure, and evaluation model elements in compliance with the medical standards. Model‐based risk assessment of a point‐of‐care diagnostic device for sepsis has been shown as a case study to show the implementation of the profile. This device is a standalone unit and the test results obtained directly affect the patient. Therefore, both the top‐down (FHA and FTA) and bottom‐up (FMEA) safety assessment methods have been used. Another objective of the study is to define a systematic and holistic method to perform fault tree analysis, not only from the system architecture models but also from the functional, activity, and sequence diagrams of the system model.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of systems design and risk management through model‐based systems development\",\"authors\":\"Y. Uludağ, Ersin Evin, Nazan Gözay Gürbüz\",\"doi\":\"10.1002/sys.21643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model‐based systems engineering is a powerful methodology to develop safety‐critical systems. The use of the system model as a single source of truth for risk and dependability analysis results in a consistent and complete assessment. Besides, representation and logging of the assessment within the model result in a complete and up‐to‐date single source of information that can be used during the device certification as well. This paper aims to provide a comprehensive risk management SysML profile that includes interconnected safety analysis [functional hazard assessment (FHA), fault tree, and failure mode and effect analysis (FTA, FMEA)], control measure, and evaluation model elements in compliance with the medical standards. Model‐based risk assessment of a point‐of‐care diagnostic device for sepsis has been shown as a case study to show the implementation of the profile. This device is a standalone unit and the test results obtained directly affect the patient. Therefore, both the top‐down (FHA and FTA) and bottom‐up (FMEA) safety assessment methods have been used. Another objective of the study is to define a systematic and holistic method to perform fault tree analysis, not only from the system architecture models but also from the functional, activity, and sequence diagrams of the system model.\",\"PeriodicalId\":54439,\"journal\":{\"name\":\"Systems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/sys.21643\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21643","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

基于模型的系统工程是开发安全关键系统的有力方法。使用系统模型作为风险和可靠性分析的单一事实来源,可以得到一致和完整的评估。此外,模型中评估的表示和记录可以形成一个完整的、最新的单一信息源,也可以在器械认证期间使用。本文旨在提供一个综合的风险管理SysML概要,包括互连的安全分析[功能危害评估(FHA),故障树,故障模式和影响分析(FTA, FMEA)],控制措施,以及符合医学标准的评价模型要素。基于模型的脓毒症点护理诊断设备的风险评估已被显示为一个案例研究,以显示该概况的实施。该设备是一个独立的单元,所获得的测试结果直接影响患者。因此,采用了自顶向下(FHA和FTA)和自底向上(FMEA)两种安全评估方法。本研究的另一个目标是定义一个系统和整体的方法来执行故障树分析,不仅从系统架构模型,而且从系统模型的功能图、活动图和序列图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of systems design and risk management through model‐based systems development
Model‐based systems engineering is a powerful methodology to develop safety‐critical systems. The use of the system model as a single source of truth for risk and dependability analysis results in a consistent and complete assessment. Besides, representation and logging of the assessment within the model result in a complete and up‐to‐date single source of information that can be used during the device certification as well. This paper aims to provide a comprehensive risk management SysML profile that includes interconnected safety analysis [functional hazard assessment (FHA), fault tree, and failure mode and effect analysis (FTA, FMEA)], control measure, and evaluation model elements in compliance with the medical standards. Model‐based risk assessment of a point‐of‐care diagnostic device for sepsis has been shown as a case study to show the implementation of the profile. This device is a standalone unit and the test results obtained directly affect the patient. Therefore, both the top‐down (FHA and FTA) and bottom‐up (FMEA) safety assessment methods have been used. Another objective of the study is to define a systematic and holistic method to perform fault tree analysis, not only from the system architecture models but also from the functional, activity, and sequence diagrams of the system model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Engineering
Systems Engineering 工程技术-工程:工业
CiteScore
5.10
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle. Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.
期刊最新文献
Systematic approach to a government‐led technology roadmap for future‐ready adaptive traffic signal control systems Emergent knowledge patterns in verification artifacts On reference architectures Requirements engineering in industry 4.0: State of the art and directions to continuous requirements engineering Enhancing conceptual models with computational capabilities: A methodical approach to executable integrative modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1