高效CO氧化CuOx/CeO2催化剂的K+改性氧化还原性能

IF 4.3 Q2 ENGINEERING, CHEMICAL ACS Engineering Au Pub Date : 2022-06-10 DOI:10.1021/acsengineeringau.2c00017
Bao-Ju Wang, Jing-Peng Zhang, Yu Han, Yi-Kai Gao, Guo-Lei Xiang, Guang-Wen Chu and Yong Luo*, 
{"title":"高效CO氧化CuOx/CeO2催化剂的K+改性氧化还原性能","authors":"Bao-Ju Wang,&nbsp;Jing-Peng Zhang,&nbsp;Yu Han,&nbsp;Yi-Kai Gao,&nbsp;Guo-Lei Xiang,&nbsp;Guang-Wen Chu and Yong Luo*,&nbsp;","doi":"10.1021/acsengineeringau.2c00017","DOIUrl":null,"url":null,"abstract":"<p >CuO<sub><i>x</i></sub>/CeO<sub>2</sub> is emerging as an effective catalyst for CO oxidation due to its unique redox properties; however, its activity and stability still need to be enhanced compared with supported platinum group metals. Here, an approach is demonstrated to increase the CO oxidation performance and resistance to hydrocarbon inhibition through the K<sup>+</sup> modification of the CuO<sub><i>x</i></sub>/CeO<sub>2</sub> catalyst. The K<sup>+</sup> can improve the electron transfer at the metal–oxide interface, shifting the redox equilibrium (Cu<sup>2+</sup> + Ce<sup>3+</sup> ↔ Cu<sup>+</sup> + Ce<sup>4+</sup>) to be right to accelerate the formation of highly active Cu<sup>+</sup> species. The reaction activity of the K<sup>+</sup>-modified CuO<sub><i>x</i></sub>/CeO<sub>2</sub> catalyst was in the same order of magnitude as the noble metal of Pt and Pd catalysts. In addition, the K<sup>+</sup>-modified catalyst showed significantly improved resistance to hydrocarbon inhibition. This work demonstrates a facile way to tune the redox properties of binary transition metal oxides.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00017","citationCount":"3","resultStr":"{\"title\":\"K+-Modified Redox Properties of the CuOx/CeO2 Catalyst for Highly Efficient CO Oxidation\",\"authors\":\"Bao-Ju Wang,&nbsp;Jing-Peng Zhang,&nbsp;Yu Han,&nbsp;Yi-Kai Gao,&nbsp;Guo-Lei Xiang,&nbsp;Guang-Wen Chu and Yong Luo*,&nbsp;\",\"doi\":\"10.1021/acsengineeringau.2c00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >CuO<sub><i>x</i></sub>/CeO<sub>2</sub> is emerging as an effective catalyst for CO oxidation due to its unique redox properties; however, its activity and stability still need to be enhanced compared with supported platinum group metals. Here, an approach is demonstrated to increase the CO oxidation performance and resistance to hydrocarbon inhibition through the K<sup>+</sup> modification of the CuO<sub><i>x</i></sub>/CeO<sub>2</sub> catalyst. The K<sup>+</sup> can improve the electron transfer at the metal–oxide interface, shifting the redox equilibrium (Cu<sup>2+</sup> + Ce<sup>3+</sup> ↔ Cu<sup>+</sup> + Ce<sup>4+</sup>) to be right to accelerate the formation of highly active Cu<sup>+</sup> species. The reaction activity of the K<sup>+</sup>-modified CuO<sub><i>x</i></sub>/CeO<sub>2</sub> catalyst was in the same order of magnitude as the noble metal of Pt and Pd catalysts. In addition, the K<sup>+</sup>-modified catalyst showed significantly improved resistance to hydrocarbon inhibition. This work demonstrates a facile way to tune the redox properties of binary transition metal oxides.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00017\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3

摘要

CuOx/CeO2因其独特的氧化还原性能而成为CO氧化的有效催化剂;但与负载型铂族金属相比,其活性和稳定性仍有待提高。本文提出了一种通过K+改性CuOx/CeO2催化剂来提高CO氧化性能和抗烃类抑制能力的方法。K+可以改善金属-氧化物界面上的电子转移,使氧化还原平衡(Cu2+ + Ce3+↔cu++ Ce4+)趋于正确,从而加速高活性Cu+物质的形成。K+修饰的CuOx/CeO2催化剂的反应活性与贵金属Pt和Pd催化剂在同一数量级。此外,K+改性催化剂的抗烃类抑制性能显著提高。这项工作展示了一种简单的方法来调整二元过渡金属氧化物的氧化还原性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
K+-Modified Redox Properties of the CuOx/CeO2 Catalyst for Highly Efficient CO Oxidation

CuOx/CeO2 is emerging as an effective catalyst for CO oxidation due to its unique redox properties; however, its activity and stability still need to be enhanced compared with supported platinum group metals. Here, an approach is demonstrated to increase the CO oxidation performance and resistance to hydrocarbon inhibition through the K+ modification of the CuOx/CeO2 catalyst. The K+ can improve the electron transfer at the metal–oxide interface, shifting the redox equilibrium (Cu2+ + Ce3+ ↔ Cu+ + Ce4+) to be right to accelerate the formation of highly active Cu+ species. The reaction activity of the K+-modified CuOx/CeO2 catalyst was in the same order of magnitude as the noble metal of Pt and Pd catalysts. In addition, the K+-modified catalyst showed significantly improved resistance to hydrocarbon inhibition. This work demonstrates a facile way to tune the redox properties of binary transition metal oxides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
期刊最新文献
Issue Editorial Masthead Issue Publication Information Magnetowetting Dynamics of Compound Droplets Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1