SmartIndex:学习索引缓存以提高性能

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Computer Architecture Letters Pub Date : 2023-04-05 DOI:10.1109/LCA.2023.3264478
Kevin Weston;Farabi Mahmud;Vahid Janfaza;Abdullah Muzahid
{"title":"SmartIndex:学习索引缓存以提高性能","authors":"Kevin Weston;Farabi Mahmud;Vahid Janfaza;Abdullah Muzahid","doi":"10.1109/LCA.2023.3264478","DOIUrl":null,"url":null,"abstract":"Modern computers rely heavily on caches to achieve higher performance. Unfortunately, a cache indexing scheme can often cause an uneven distribution of addresses across cache sets resulting in many evictions of useful cache blocks. To address this issue, we propose \n<sc>SmartIndex</small>\n, a self-optimized indexing scheme that leverages machine learning to actively learn the memory access pattern and dynamically adjust indexes to evenly distribute the cache lines across all sets in the cache, thereby reducing cache misses. Experimental results on a set of 26 memory-intensive applications show that for non-uniform applications, \n<sc>SmartIndex</small>\n can reduce the misses per kilo instructions (MPKI) of a direct mapped cache by up to 39%, translating into an IPC speedup of 7.23% compared to the conventional power-of-two indexing scheme. Our experiments also show that \n<sc>SmartIndex</small>\n can work with any cache associativity.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"22 1","pages":"33-36"},"PeriodicalIF":1.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SmartIndex: Learning to Index Caches to Improve Performance\",\"authors\":\"Kevin Weston;Farabi Mahmud;Vahid Janfaza;Abdullah Muzahid\",\"doi\":\"10.1109/LCA.2023.3264478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern computers rely heavily on caches to achieve higher performance. Unfortunately, a cache indexing scheme can often cause an uneven distribution of addresses across cache sets resulting in many evictions of useful cache blocks. To address this issue, we propose \\n<sc>SmartIndex</small>\\n, a self-optimized indexing scheme that leverages machine learning to actively learn the memory access pattern and dynamically adjust indexes to evenly distribute the cache lines across all sets in the cache, thereby reducing cache misses. Experimental results on a set of 26 memory-intensive applications show that for non-uniform applications, \\n<sc>SmartIndex</small>\\n can reduce the misses per kilo instructions (MPKI) of a direct mapped cache by up to 39%, translating into an IPC speedup of 7.23% compared to the conventional power-of-two indexing scheme. Our experiments also show that \\n<sc>SmartIndex</small>\\n can work with any cache associativity.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":\"22 1\",\"pages\":\"33-36\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10092937/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10092937/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

现代计算机严重依赖缓存来实现更高的性能。不幸的是,缓存索引方案通常会导致地址在缓存集之间的不均匀分布,从而导致许多有用的缓存块被移除。为了解决这个问题,我们提出了SmartIndex,这是一种自优化的索引方案,它利用机器学习来主动学习内存访问模式,并动态调整索引,以将缓存线均匀分布在缓存中的所有集合中,从而减少缓存未命中。在一组26个内存密集型应用程序上的实验结果表明,对于非均匀应用程序,SmartIndex可以将直接映射缓存的每千指令未命中率(MPKI)降低39%,与传统的二次幂索引方案相比,IPC加速率为7.23%。我们的实验还表明,SmartIndex可以与任何缓存关联性一起工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SmartIndex: Learning to Index Caches to Improve Performance
Modern computers rely heavily on caches to achieve higher performance. Unfortunately, a cache indexing scheme can often cause an uneven distribution of addresses across cache sets resulting in many evictions of useful cache blocks. To address this issue, we propose SmartIndex , a self-optimized indexing scheme that leverages machine learning to actively learn the memory access pattern and dynamically adjust indexes to evenly distribute the cache lines across all sets in the cache, thereby reducing cache misses. Experimental results on a set of 26 memory-intensive applications show that for non-uniform applications, SmartIndex can reduce the misses per kilo instructions (MPKI) of a direct mapped cache by up to 39%, translating into an IPC speedup of 7.23% compared to the conventional power-of-two indexing scheme. Our experiments also show that SmartIndex can work with any cache associativity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
期刊最新文献
A Flexible Hybrid Interconnection Design for High-Performance and Energy-Efficient Chiplet-Based Systems Efficient Implementation of Knuth Yao Sampler on Reconfigurable Hardware SmartQuant: CXL-Based AI Model Store in Support of Runtime Configurable Weight Quantization Proactive Embedding on Cold Data for Deep Learning Recommendation Model Training Octopus: A Cycle-Accurate Cache System Simulator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1