基于自动查询扩展机制和基于MVRA的伪重排序改进谷歌学者引擎的搜索结果

IF 0.3 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Information and Organizational Sciences Pub Date : 2018-12-10 DOI:10.31341/jios.42.2.5
Mawloud Mosbah
{"title":"基于自动查询扩展机制和基于MVRA的伪重排序改进谷歌学者引擎的搜索结果","authors":"Mawloud Mosbah","doi":"10.31341/jios.42.2.5","DOIUrl":null,"url":null,"abstract":"In this paper, we address the enhancing of Google Scholar engine, in the context of text retrieval, through two mechanisms related to the interrogation protocol of that query expansion and reformulation. The both schemes are applied with re-ranking results using a pseudo relevance feedback algorithm that we have proposed previously in the context of Content based Image Retrieval (CBIR) namely Majority Voting Re-ranking Algorithm (MVRA). The experiments conducted using ten queries reveal very promising results in terms of effectiveness.","PeriodicalId":43428,"journal":{"name":"Journal of Information and Organizational Sciences","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the Results of Google Scholar Engine through Automatic Query Expansion Mechanism and Pseudo Re-ranking using MVRA\",\"authors\":\"Mawloud Mosbah\",\"doi\":\"10.31341/jios.42.2.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the enhancing of Google Scholar engine, in the context of text retrieval, through two mechanisms related to the interrogation protocol of that query expansion and reformulation. The both schemes are applied with re-ranking results using a pseudo relevance feedback algorithm that we have proposed previously in the context of Content based Image Retrieval (CBIR) namely Majority Voting Re-ranking Algorithm (MVRA). The experiments conducted using ten queries reveal very promising results in terms of effectiveness.\",\"PeriodicalId\":43428,\"journal\":{\"name\":\"Journal of Information and Organizational Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Organizational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31341/jios.42.2.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Organizational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31341/jios.42.2.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们通过与查询扩展和重新表述的查询协议相关的两种机制来解决b谷歌Scholar引擎在文本检索环境下的增强问题。这两种方案都使用了我们之前在基于内容的图像检索(CBIR)的背景下提出的伪相关反馈算法即多数投票重新排序算法(MVRA)来重新排序结果。使用十个查询进行的实验在有效性方面显示了非常有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Results of Google Scholar Engine through Automatic Query Expansion Mechanism and Pseudo Re-ranking using MVRA
In this paper, we address the enhancing of Google Scholar engine, in the context of text retrieval, through two mechanisms related to the interrogation protocol of that query expansion and reformulation. The both schemes are applied with re-ranking results using a pseudo relevance feedback algorithm that we have proposed previously in the context of Content based Image Retrieval (CBIR) namely Majority Voting Re-ranking Algorithm (MVRA). The experiments conducted using ten queries reveal very promising results in terms of effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information and Organizational Sciences
Journal of Information and Organizational Sciences COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.10
自引率
0.00%
发文量
14
审稿时长
12 weeks
期刊最新文献
Employing a Time Series Forecasting Model for Tourism Demand Using ANFIS A Mobile Based Pharmacy Store Location-aware System The Contribution of Women on Corporate Boards Croatian Journals Covered by SCIE/SSCI Towards an Improved Framework for E-Risk Management for Digital Financial Services (DFS) in Ugandan Banks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1