LRMoE。基于专家混合回归模型的保险损失建模软件包

IF 1.5 Q3 BUSINESS, FINANCE Annals of Actuarial Science Pub Date : 2021-03-18 DOI:10.1017/S1748499521000087
Spark C. Tseung, A. Badescu, Tsz Chai Fung, X. Lin
{"title":"LRMoE。基于专家混合回归模型的保险损失建模软件包","authors":"Spark C. Tseung, A. Badescu, Tsz Chai Fung, X. Lin","doi":"10.1017/S1748499521000087","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a new julia package, LRMoE, a statistical software tailor-made for actuarial applications, which allows actuarial researchers and practitioners to model and analyse insurance loss frequencies and severities using the Logit-weighted Reduced Mixture-of-Experts (LRMoE) model. LRMoE offers several new distinctive features which are motivated by various actuarial applications and mostly cannot be achieved using existing packages for mixture models. Key features include a wider coverage on frequency and severity distributions and their zero inflation, the flexibility to vary classes of distributions across components, parameter estimation under data censoring and truncation and a collection of insurance ratemaking and reserving functions. The package also provides several model evaluation and visualisation functions to help users easily analyse the performance of the fitted model and interpret the model in insurance contexts.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1748499521000087","citationCount":"4","resultStr":"{\"title\":\"LRMoE.jl: a software package for insurance loss modelling using mixture of experts regression model\",\"authors\":\"Spark C. Tseung, A. Badescu, Tsz Chai Fung, X. Lin\",\"doi\":\"10.1017/S1748499521000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces a new julia package, LRMoE, a statistical software tailor-made for actuarial applications, which allows actuarial researchers and practitioners to model and analyse insurance loss frequencies and severities using the Logit-weighted Reduced Mixture-of-Experts (LRMoE) model. LRMoE offers several new distinctive features which are motivated by various actuarial applications and mostly cannot be achieved using existing packages for mixture models. Key features include a wider coverage on frequency and severity distributions and their zero inflation, the flexibility to vary classes of distributions across components, parameter estimation under data censoring and truncation and a collection of insurance ratemaking and reserving functions. The package also provides several model evaluation and visualisation functions to help users easily analyse the performance of the fitted model and interpret the model in insurance contexts.\",\"PeriodicalId\":44135,\"journal\":{\"name\":\"Annals of Actuarial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S1748499521000087\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Actuarial Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1748499521000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1748499521000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 4

摘要

摘要:本文介绍了一种新的julia软件包LRMoE,这是一种为精算应用量身定制的统计软件,它允许精算研究人员和从业人员使用Logit-weighted Reduced Mixture-of-Experts (LRMoE)模型来建模和分析保险损失频率和严重程度。LRMoE提供了几个新的独特功能,这些功能是由各种精算应用程序驱动的,并且大多数不能使用现有的混合模型包实现。主要特点包括更广泛地覆盖频率和严重程度分布及其零通货膨胀,在各组成部分之间灵活地改变分布类别,在数据审查和截断下进行参数估计,以及一系列保险费率制定和保留函数。该软件包还提供了几个模型评估和可视化功能,以帮助用户轻松分析拟合模型的性能,并在保险环境中解释模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LRMoE.jl: a software package for insurance loss modelling using mixture of experts regression model
Abstract This paper introduces a new julia package, LRMoE, a statistical software tailor-made for actuarial applications, which allows actuarial researchers and practitioners to model and analyse insurance loss frequencies and severities using the Logit-weighted Reduced Mixture-of-Experts (LRMoE) model. LRMoE offers several new distinctive features which are motivated by various actuarial applications and mostly cannot be achieved using existing packages for mixture models. Key features include a wider coverage on frequency and severity distributions and their zero inflation, the flexibility to vary classes of distributions across components, parameter estimation under data censoring and truncation and a collection of insurance ratemaking and reserving functions. The package also provides several model evaluation and visualisation functions to help users easily analyse the performance of the fitted model and interpret the model in insurance contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
期刊最新文献
Generalized Poisson random variable: its distributional properties and actuarial applications Optimizing insurance risk assessment: a regression model based on a risk-loaded approach AffineMortality: An R package for estimation, analysis, and projection of affine mortality models On the benefits of pension plan consolidation: Understanding the impact of full plan mergers Bonus-Malus Scale premiums for Tweedie’s compound Poisson models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1