Hyunwoo Joe, Hyunsuk Kim, Seung-Jun Lee, Tae Sung Park, Myung-Jun Shin, Lee Hooman, Daesub Yoon, Woojin Kim
{"title":"智能康复系统中影响肌肉功能实时评估的因素","authors":"Hyunwoo Joe, Hyunsuk Kim, Seung-Jun Lee, Tae Sung Park, Myung-Jun Shin, Lee Hooman, Daesub Yoon, Woojin Kim","doi":"10.4218/etrij.2021-0417","DOIUrl":null,"url":null,"abstract":"<p>Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"45 4","pages":"603-614"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2021-0417","citationCount":"1","resultStr":"{\"title\":\"Factors affecting real-time evaluation of muscle function in smart rehab systems\",\"authors\":\"Hyunwoo Joe, Hyunsuk Kim, Seung-Jun Lee, Tae Sung Park, Myung-Jun Shin, Lee Hooman, Daesub Yoon, Woojin Kim\",\"doi\":\"10.4218/etrij.2021-0417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"45 4\",\"pages\":\"603-614\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2021-0417\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2021-0417\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2021-0417","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Factors affecting real-time evaluation of muscle function in smart rehab systems
Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.