Zhongzheng Lin, Jianqi Hu, Yujie Chen, C. Brès, Siyuan Yu
{"title":"单次Kramers-Kronig复轨道角动量谱反演","authors":"Zhongzheng Lin, Jianqi Hu, Yujie Chen, C. Brès, Siyuan Yu","doi":"10.1117/1.AP.5.3.036006","DOIUrl":null,"url":null,"abstract":"Abstract. Orbital angular momentum (OAM) spectrum diagnosis is a fundamental building block for diverse OAM-based systems. Among others, the simple on-axis interferometric measurement can retrieve the amplitude and phase information of complex OAM spectra in a few shots. Yet, its single-shot retrieval remains elusive, due to the signal–signal beat interference inherent in the measurement. Here, we introduce the concept of Kramers–Kronig (KK) receiver in coherent communications to the OAM domain, enabling rigorous, single-shot OAM spectrum measurement. We explain in detail the working principle and the requirement of the KK method and then apply the technique to precisely measure various characteristic OAM states. In addition, we discuss the effects of the carrier-to-signal power ratio and the number of sampling points essential for rigorous retrieval and evaluate the performance on a large set of random OAM spectra and high-dimensional spaces. Single-shot KK interferometry shows enormous potential for characterizing complex OAM states in real time.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"5 1","pages":"036006 - 036006"},"PeriodicalIF":20.6000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval\",\"authors\":\"Zhongzheng Lin, Jianqi Hu, Yujie Chen, C. Brès, Siyuan Yu\",\"doi\":\"10.1117/1.AP.5.3.036006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Orbital angular momentum (OAM) spectrum diagnosis is a fundamental building block for diverse OAM-based systems. Among others, the simple on-axis interferometric measurement can retrieve the amplitude and phase information of complex OAM spectra in a few shots. Yet, its single-shot retrieval remains elusive, due to the signal–signal beat interference inherent in the measurement. Here, we introduce the concept of Kramers–Kronig (KK) receiver in coherent communications to the OAM domain, enabling rigorous, single-shot OAM spectrum measurement. We explain in detail the working principle and the requirement of the KK method and then apply the technique to precisely measure various characteristic OAM states. In addition, we discuss the effects of the carrier-to-signal power ratio and the number of sampling points essential for rigorous retrieval and evaluate the performance on a large set of random OAM spectra and high-dimensional spaces. Single-shot KK interferometry shows enormous potential for characterizing complex OAM states in real time.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\"5 1\",\"pages\":\"036006 - 036006\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.5.3.036006\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.5.3.036006","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval
Abstract. Orbital angular momentum (OAM) spectrum diagnosis is a fundamental building block for diverse OAM-based systems. Among others, the simple on-axis interferometric measurement can retrieve the amplitude and phase information of complex OAM spectra in a few shots. Yet, its single-shot retrieval remains elusive, due to the signal–signal beat interference inherent in the measurement. Here, we introduce the concept of Kramers–Kronig (KK) receiver in coherent communications to the OAM domain, enabling rigorous, single-shot OAM spectrum measurement. We explain in detail the working principle and the requirement of the KK method and then apply the technique to precisely measure various characteristic OAM states. In addition, we discuss the effects of the carrier-to-signal power ratio and the number of sampling points essential for rigorous retrieval and evaluate the performance on a large set of random OAM spectra and high-dimensional spaces. Single-shot KK interferometry shows enormous potential for characterizing complex OAM states in real time.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.