M. Kumar, V. Ramya, C. S. Kumar, T. Raju, N. Kumar, G. Seshu, G. Sathish, D. Bhadru, M. .. Ramana
{"title":"通过AMMI和GGE双图分析鉴定对雨养环境适应性较强的鸽豌豆基因型","authors":"M. Kumar, V. Ramya, C. S. Kumar, T. Raju, N. Kumar, G. Seshu, G. Sathish, D. Bhadru, M. .. Ramana","doi":"10.31742/ijgpb.81.1.7","DOIUrl":null,"url":null,"abstract":"Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important pulse crop grown under Indian rainfed agriculture. Twenty eight pigeonpea genotypes were tested for stability and adaptability across ten rainfed locations in the States of Telangana and Karnataka, India using AMMI (additive main effects and multiplicative interaction) model and GGE (genotype and genotype by environment) biplot method. The grain yields were significantly affected by environment (56.8%) followed by genotype × environment interaction (27.6%) and genotype (18.6%) variances. Two mega environments were identified with several winning genotypes viz., ICPH 2740 (G15), TS 3R (G10), PRG 176 (G8) and ICPL 96058 (G22). E2 (Gulbarga, Karnataka), E3 (Bidar, Karnataka) and E6 (Vikarabad, Telangana) were the most discriminating environments. Genotypes, ICPH 2740, PRG 176 and TS 3R were the best cultivars in all the environments whereas PRG 158 (G9), ICPL 87119 (G12), ICPL 20098 (G19) and ICPL 96058 (G22) were suitable across a wide range of environments. Genotypes, ICPH 2740 and PRG 176 can be recommended on a large scale to the farmers with small holdings to enhance pigeonpea productivity and improve the food security","PeriodicalId":13321,"journal":{"name":"Indian Journal of Genetics and Plant Breeding","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identification of pigeonpea genotypes with wider adaptability to rainfed environments through AMMI and GGE biplot analyses\",\"authors\":\"M. Kumar, V. Ramya, C. S. Kumar, T. Raju, N. Kumar, G. Seshu, G. Sathish, D. Bhadru, M. .. Ramana\",\"doi\":\"10.31742/ijgpb.81.1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important pulse crop grown under Indian rainfed agriculture. Twenty eight pigeonpea genotypes were tested for stability and adaptability across ten rainfed locations in the States of Telangana and Karnataka, India using AMMI (additive main effects and multiplicative interaction) model and GGE (genotype and genotype by environment) biplot method. The grain yields were significantly affected by environment (56.8%) followed by genotype × environment interaction (27.6%) and genotype (18.6%) variances. Two mega environments were identified with several winning genotypes viz., ICPH 2740 (G15), TS 3R (G10), PRG 176 (G8) and ICPL 96058 (G22). E2 (Gulbarga, Karnataka), E3 (Bidar, Karnataka) and E6 (Vikarabad, Telangana) were the most discriminating environments. Genotypes, ICPH 2740, PRG 176 and TS 3R were the best cultivars in all the environments whereas PRG 158 (G9), ICPL 87119 (G12), ICPL 20098 (G19) and ICPL 96058 (G22) were suitable across a wide range of environments. Genotypes, ICPH 2740 and PRG 176 can be recommended on a large scale to the farmers with small holdings to enhance pigeonpea productivity and improve the food security\",\"PeriodicalId\":13321,\"journal\":{\"name\":\"Indian Journal of Genetics and Plant Breeding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Genetics and Plant Breeding\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.31742/ijgpb.81.1.7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Genetics and Plant Breeding","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.31742/ijgpb.81.1.7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Identification of pigeonpea genotypes with wider adaptability to rainfed environments through AMMI and GGE biplot analyses
Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important pulse crop grown under Indian rainfed agriculture. Twenty eight pigeonpea genotypes were tested for stability and adaptability across ten rainfed locations in the States of Telangana and Karnataka, India using AMMI (additive main effects and multiplicative interaction) model and GGE (genotype and genotype by environment) biplot method. The grain yields were significantly affected by environment (56.8%) followed by genotype × environment interaction (27.6%) and genotype (18.6%) variances. Two mega environments were identified with several winning genotypes viz., ICPH 2740 (G15), TS 3R (G10), PRG 176 (G8) and ICPL 96058 (G22). E2 (Gulbarga, Karnataka), E3 (Bidar, Karnataka) and E6 (Vikarabad, Telangana) were the most discriminating environments. Genotypes, ICPH 2740, PRG 176 and TS 3R were the best cultivars in all the environments whereas PRG 158 (G9), ICPL 87119 (G12), ICPL 20098 (G19) and ICPL 96058 (G22) were suitable across a wide range of environments. Genotypes, ICPH 2740 and PRG 176 can be recommended on a large scale to the farmers with small holdings to enhance pigeonpea productivity and improve the food security
期刊介绍:
Advance the cause of genetics and plant breeding and to encourage and promote study and research in these disciplines in the service of agriculture; to disseminate the knowledge of genetics and plant breeding; provide facilities for association and conference among students of genetics and plant breeding and for encouragement of close relationship between them and those in the related sciences; advocate policies in the interest of the nation in the field of genetics and plant breeding, and facilitate international cooperation in the field of genetics and plant breeding.