单极支撑耗散控制摇桥桥墩地震响应预测的数值模拟方法

IF 0.8 Q4 ENGINEERING, GEOLOGICAL Bulletin of the New Zealand Society for Earthquake Engineering Pub Date : 2023-09-01 DOI:10.5459/bnzsee.1591
S. Piras, Alessandro Palermo, G. Chiaro
{"title":"单极支撑耗散控制摇桥桥墩地震响应预测的数值模拟方法","authors":"S. Piras, Alessandro Palermo, G. Chiaro","doi":"10.5459/bnzsee.1591","DOIUrl":null,"url":null,"abstract":"In this paper, rotational spring and multi-spring models are implemented in SAP2000® software, and numerical solutions are presented for monotonic and cyclic behaviour of a dissipative controlled rocking (DCR) bridge column supported on a monopile foundation that is embedded in sand. The pile-soil system is modelled with elastic frame elements connected to vertically-spaced bi-linear soil springs. Three soil conditions (i.e. loose, medium-dense and dense sand) are considered to account for soil-structure interaction effects. The results from an experimental programme, carried out by the authors at the University of Canterbury, are used to validate the numerical solutions. The numerical simulation results for the three sand conditions are in good agreement with the experimental ones. From a computational standpoint, the relatively simple mathematical formulation and easy implementation would make the rotational spring model more desirable than the complex multi-spring model. On the other hand, the multi-spring model is more versatile and capable of describing the cyclic response of the DCR pier, such as the post-tensioning force, axial stress in the steel dissipaters and gap-opening interface rocking characteristics.","PeriodicalId":46396,"journal":{"name":"Bulletin of the New Zealand Society for Earthquake Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical modelling approaches for predicting the seismic response of monopole-supported dissipative controlled rocking bridge piers\",\"authors\":\"S. Piras, Alessandro Palermo, G. Chiaro\",\"doi\":\"10.5459/bnzsee.1591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, rotational spring and multi-spring models are implemented in SAP2000® software, and numerical solutions are presented for monotonic and cyclic behaviour of a dissipative controlled rocking (DCR) bridge column supported on a monopile foundation that is embedded in sand. The pile-soil system is modelled with elastic frame elements connected to vertically-spaced bi-linear soil springs. Three soil conditions (i.e. loose, medium-dense and dense sand) are considered to account for soil-structure interaction effects. The results from an experimental programme, carried out by the authors at the University of Canterbury, are used to validate the numerical solutions. The numerical simulation results for the three sand conditions are in good agreement with the experimental ones. From a computational standpoint, the relatively simple mathematical formulation and easy implementation would make the rotational spring model more desirable than the complex multi-spring model. On the other hand, the multi-spring model is more versatile and capable of describing the cyclic response of the DCR pier, such as the post-tensioning force, axial stress in the steel dissipaters and gap-opening interface rocking characteristics.\",\"PeriodicalId\":46396,\"journal\":{\"name\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the New Zealand Society for Earthquake Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5459/bnzsee.1591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the New Zealand Society for Earthquake Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5459/bnzsee.1591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,在SAP2000®软件中实现了旋转弹簧和多弹簧模型,并给出了嵌入砂土的单桩基础上支撑的耗散控制摇摆(DCR)桥柱的单调和循环行为的数值解。桩-土系统是用弹性框架单元与垂直间隔的双线土弹簧连接来建模的。考虑了三种土壤条件(即松散、中密和密砂)来解释土壤-结构相互作用效应。作者在坎特伯雷大学进行的一个实验程序的结果被用来验证数值解。数值模拟结果与实验结果吻合较好。从计算的角度来看,相对简单的数学公式和易于实现使旋转弹簧模型比复杂的多弹簧模型更可取。另一方面,多弹簧模型具有更强的通用性,能够描述DCR桥墩的循环响应,如后张力、钢消散体的轴向应力和开孔界面的晃动特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical modelling approaches for predicting the seismic response of monopole-supported dissipative controlled rocking bridge piers
In this paper, rotational spring and multi-spring models are implemented in SAP2000® software, and numerical solutions are presented for monotonic and cyclic behaviour of a dissipative controlled rocking (DCR) bridge column supported on a monopile foundation that is embedded in sand. The pile-soil system is modelled with elastic frame elements connected to vertically-spaced bi-linear soil springs. Three soil conditions (i.e. loose, medium-dense and dense sand) are considered to account for soil-structure interaction effects. The results from an experimental programme, carried out by the authors at the University of Canterbury, are used to validate the numerical solutions. The numerical simulation results for the three sand conditions are in good agreement with the experimental ones. From a computational standpoint, the relatively simple mathematical formulation and easy implementation would make the rotational spring model more desirable than the complex multi-spring model. On the other hand, the multi-spring model is more versatile and capable of describing the cyclic response of the DCR pier, such as the post-tensioning force, axial stress in the steel dissipaters and gap-opening interface rocking characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
17.60%
发文量
14
期刊最新文献
Method to identify if torsional mode of a building is its first mode Earthquake design loads for retaining walls Infrastructure planning emergency levels of service for the Wellington region, Aotearoa New Zealand – An operationalised framework Seismic fragility of reinforced concrete buildings with hollow-core flooring systems Evaluation of the Inter-frequency Correlation of New Zealand CyberShake Crustal Earthquake Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1