用辣根过氧化物酶对鱼明胶和甜菜果胶进行酶修饰

IF 4.6 Q1 CHEMISTRY, APPLIED Food Hydrocolloids for Health Pub Date : 2022-12-01 DOI:10.1016/j.fhfh.2022.100080
Ebenezer Asiamah , Dominic Aboagye , Ahmed A. Zaky , Charles Asakiya , Ethel Juliet Serwa Blessie
{"title":"用辣根过氧化物酶对鱼明胶和甜菜果胶进行酶修饰","authors":"Ebenezer Asiamah ,&nbsp;Dominic Aboagye ,&nbsp;Ahmed A. Zaky ,&nbsp;Charles Asakiya ,&nbsp;Ethel Juliet Serwa Blessie","doi":"10.1016/j.fhfh.2022.100080","DOIUrl":null,"url":null,"abstract":"<div><p>The Fish Gelatin (FG), a good alternative for unhealthy and limited socio-cultural mammalian gelatin appears to possess endogenous structural limitations. The goal of this work was to use enzymatic crosslinking to modify cold-water Fish Gelatin (FG) with Beet Pectin. Reaction conditions were optimized by a single factorial experiment and covalent crosslinking was measured by ultraviolet (UV)-Vis spectroscopy at 340 nm to indicate Horseradish Peroxidase (HRP) catalyzes Beet Pectin (BP). At 50 °C for 4 h, the highest weight ratio of heterologous adducts between FG-BP was 1:3, with HRP and Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) of 2 µg/mL and 0.067%, (v/v), respectively. Intermolecular cross-linking was found between treated samples using ATR-FTIR and Sodium Dodecyl Sulphur and Polyacrylamide Gel Electrophoresis (SDS-PAGE). The heterologous product, control FG, and BP as well as a mixture of untreated FG-BP had a β-sheet of 41.14%, 39.65%, 39.9%, and 40.0%, respectively. The maximum reduction in elution was obtained in heterogeneous FG-BP complex. Furthermore, a schematic mechanism for Cold-water Fish Gelatin and Beet Pectin was proposed. Overall, peroxidase crosslinked BP was able to modify cold-water Fish Gelatin. The use of Horseradish peroxidase on Fish Gelatin could provide a practical way of building the FG-BP complex as a basis for understanding the FG functionalities comprehensively.</p></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"2 ","pages":"Article 100080"},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667025922000279/pdfft?md5=b18b5c4ee02315a448a664d4c300ce31&pid=1-s2.0-S2667025922000279-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Enzymatic modification of Fish Gelatin and Beet Pectin using Horseradish peroxidase\",\"authors\":\"Ebenezer Asiamah ,&nbsp;Dominic Aboagye ,&nbsp;Ahmed A. Zaky ,&nbsp;Charles Asakiya ,&nbsp;Ethel Juliet Serwa Blessie\",\"doi\":\"10.1016/j.fhfh.2022.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Fish Gelatin (FG), a good alternative for unhealthy and limited socio-cultural mammalian gelatin appears to possess endogenous structural limitations. The goal of this work was to use enzymatic crosslinking to modify cold-water Fish Gelatin (FG) with Beet Pectin. Reaction conditions were optimized by a single factorial experiment and covalent crosslinking was measured by ultraviolet (UV)-Vis spectroscopy at 340 nm to indicate Horseradish Peroxidase (HRP) catalyzes Beet Pectin (BP). At 50 °C for 4 h, the highest weight ratio of heterologous adducts between FG-BP was 1:3, with HRP and Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) of 2 µg/mL and 0.067%, (v/v), respectively. Intermolecular cross-linking was found between treated samples using ATR-FTIR and Sodium Dodecyl Sulphur and Polyacrylamide Gel Electrophoresis (SDS-PAGE). The heterologous product, control FG, and BP as well as a mixture of untreated FG-BP had a β-sheet of 41.14%, 39.65%, 39.9%, and 40.0%, respectively. The maximum reduction in elution was obtained in heterogeneous FG-BP complex. Furthermore, a schematic mechanism for Cold-water Fish Gelatin and Beet Pectin was proposed. Overall, peroxidase crosslinked BP was able to modify cold-water Fish Gelatin. The use of Horseradish peroxidase on Fish Gelatin could provide a practical way of building the FG-BP complex as a basis for understanding the FG functionalities comprehensively.</p></div>\",\"PeriodicalId\":12385,\"journal\":{\"name\":\"Food Hydrocolloids for Health\",\"volume\":\"2 \",\"pages\":\"Article 100080\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667025922000279/pdfft?md5=b18b5c4ee02315a448a664d4c300ce31&pid=1-s2.0-S2667025922000279-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids for Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667025922000279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025922000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

鱼类明胶(FG),一个很好的替代不健康和有限的社会文化哺乳动物明胶似乎具有内源性结构限制。本研究的目的是利用酶交联技术,用甜菜果胶改性冷水鱼明胶。通过单因子实验优化反应条件,并在340 nm紫外-可见光谱下测定共价交联反应,证实辣根过氧化物酶(HRP)催化甜菜果胶(BP)。在50℃作用4 h时,FG-BP间外源加合物的最大重量比为1:3,HRP和过氧化氢(H2O2)分别为2µg/mL和0.067% (v/v)。利用ATR-FTIR、十二烷基硫钠和聚丙烯酰胺凝胶电泳(SDS-PAGE)发现处理后的样品之间存在分子间交联。异种产物、对照FG和BP以及未处理FG-BP的混合物的β-sheet分别为41.14%、39.65%、39.9%和40.0%。在非均相FG-BP络合物中洗脱效果最大。并对冷水鱼明胶和甜菜果胶的合成机理进行了初步探讨。总的来说,过氧化物酶交联BP能够修饰冷水鱼明胶。辣根过氧化物酶在鱼明胶上的应用为FG- bp复合物的构建提供了一种实用的方法,为全面了解FG的功能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enzymatic modification of Fish Gelatin and Beet Pectin using Horseradish peroxidase

The Fish Gelatin (FG), a good alternative for unhealthy and limited socio-cultural mammalian gelatin appears to possess endogenous structural limitations. The goal of this work was to use enzymatic crosslinking to modify cold-water Fish Gelatin (FG) with Beet Pectin. Reaction conditions were optimized by a single factorial experiment and covalent crosslinking was measured by ultraviolet (UV)-Vis spectroscopy at 340 nm to indicate Horseradish Peroxidase (HRP) catalyzes Beet Pectin (BP). At 50 °C for 4 h, the highest weight ratio of heterologous adducts between FG-BP was 1:3, with HRP and Hydrogen peroxide (H2O2) of 2 µg/mL and 0.067%, (v/v), respectively. Intermolecular cross-linking was found between treated samples using ATR-FTIR and Sodium Dodecyl Sulphur and Polyacrylamide Gel Electrophoresis (SDS-PAGE). The heterologous product, control FG, and BP as well as a mixture of untreated FG-BP had a β-sheet of 41.14%, 39.65%, 39.9%, and 40.0%, respectively. The maximum reduction in elution was obtained in heterogeneous FG-BP complex. Furthermore, a schematic mechanism for Cold-water Fish Gelatin and Beet Pectin was proposed. Overall, peroxidase crosslinked BP was able to modify cold-water Fish Gelatin. The use of Horseradish peroxidase on Fish Gelatin could provide a practical way of building the FG-BP complex as a basis for understanding the FG functionalities comprehensively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
61 days
期刊最新文献
Encapsulation of yarrow phenolic compounds in lupin protein nanoemulsions increases stability during gastrointestinal transit and delivery in the colon Pectin oligosaccharides from Citri Reticulatae Pericarpium ‘Chachi’ promote wound healing in HaCaT keratinocytes by enhancing cell proliferation and migration Green synthesis of silver nanoparticles from mulberry leaf through hot melt extrusion: Enhanced antioxidant, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties Silkworm pupae protein-based film incorporated with Catharanthus roseus leaf extract-based nanoparticles enhanced the lipid stability and microbial quality of cheddar cheese Re-processing of pharmaceutical herb residues using isolated probiotics from plant sources and their beneficial effects on diarrhea
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1