Martina Marečková, Veronika Danková, L. Zelený, P. Suran
{"title":"使用大量集对无损近红外光谱进行外部验证,以创建稳健的校准模型,从而预测苹果硬度","authors":"Martina Marečková, Veronika Danková, L. Zelený, P. Suran","doi":"10.1177/09670335211054299","DOIUrl":null,"url":null,"abstract":"Non-invasive flesh firmness prediction using near infrared spectroscopy has been perfected and validated on three apple varieties. Three novel calibration models were developed following three year's of repeated large-scale sampling of stored commercial apple varieties ‘Gala’, ‘Red Jonaprince’ and ‘Jonagored’. The spectroscopic results were compared directly with those obtained using the invasive method. Increased accuracy of calibration models was achieved with the newly established data collection model. The results exhibited coefficient of determination for calibration, R2, and ratio of prediction to deviation (RPD) in excess of 0.91 and 2.3, respectively, thus enabling excellent prediction of flesh firmness via a non-invasive and fast spectroscopic approach. The highest R2 obtained was 0.94, RPD 2.6, root mean square error of calibration 5.87 N, and root mean square error of cross-validation (internal) 6.75 N for variety ‘Red Jonaprince’. Our complex long-term study provided excellent external validated calibration models and the approach can help developing calibration models for commercial sorting lines using near infrared spectroscopy.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"30 1","pages":"97 - 104"},"PeriodicalIF":1.6000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-destructive near infrared spectroscopy externally validated using large number sets for creation of robust calibration models enabling prediction of apple firmness\",\"authors\":\"Martina Marečková, Veronika Danková, L. Zelený, P. Suran\",\"doi\":\"10.1177/09670335211054299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-invasive flesh firmness prediction using near infrared spectroscopy has been perfected and validated on three apple varieties. Three novel calibration models were developed following three year's of repeated large-scale sampling of stored commercial apple varieties ‘Gala’, ‘Red Jonaprince’ and ‘Jonagored’. The spectroscopic results were compared directly with those obtained using the invasive method. Increased accuracy of calibration models was achieved with the newly established data collection model. The results exhibited coefficient of determination for calibration, R2, and ratio of prediction to deviation (RPD) in excess of 0.91 and 2.3, respectively, thus enabling excellent prediction of flesh firmness via a non-invasive and fast spectroscopic approach. The highest R2 obtained was 0.94, RPD 2.6, root mean square error of calibration 5.87 N, and root mean square error of cross-validation (internal) 6.75 N for variety ‘Red Jonaprince’. Our complex long-term study provided excellent external validated calibration models and the approach can help developing calibration models for commercial sorting lines using near infrared spectroscopy.\",\"PeriodicalId\":16551,\"journal\":{\"name\":\"Journal of Near Infrared Spectroscopy\",\"volume\":\"30 1\",\"pages\":\"97 - 104\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Near Infrared Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335211054299\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211054299","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Non-destructive near infrared spectroscopy externally validated using large number sets for creation of robust calibration models enabling prediction of apple firmness
Non-invasive flesh firmness prediction using near infrared spectroscopy has been perfected and validated on three apple varieties. Three novel calibration models were developed following three year's of repeated large-scale sampling of stored commercial apple varieties ‘Gala’, ‘Red Jonaprince’ and ‘Jonagored’. The spectroscopic results were compared directly with those obtained using the invasive method. Increased accuracy of calibration models was achieved with the newly established data collection model. The results exhibited coefficient of determination for calibration, R2, and ratio of prediction to deviation (RPD) in excess of 0.91 and 2.3, respectively, thus enabling excellent prediction of flesh firmness via a non-invasive and fast spectroscopic approach. The highest R2 obtained was 0.94, RPD 2.6, root mean square error of calibration 5.87 N, and root mean square error of cross-validation (internal) 6.75 N for variety ‘Red Jonaprince’. Our complex long-term study provided excellent external validated calibration models and the approach can help developing calibration models for commercial sorting lines using near infrared spectroscopy.
期刊介绍:
JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.