{"title":"用单光子证明量子最小作用原理","authors":"Yong-Li Wen, Yunfei Wang, Li-Man Tian, Shanchao Zhang, Jianfeng Li, Jing-Song Du, Hui Yan, Shi-Liang Zhu","doi":"10.1038/s41566-023-01212-1","DOIUrl":null,"url":null,"abstract":"The principle of least action is arguably the most fundamental principle in physics as it can be used to derive the equations of motion in various branches of physics. However, this principle has not been experimentally demonstrated at the quantum level because the propagators for Feynman’s path integrals have never been observed. The propagator is a fundamental concept and contains various significant properties of a quantum system in the path integral formulation, so its experimental observation is itself essential in quantum mechanics. Here we theoretically propose and experimentally observe the propagators of single photons based on the method of directly measuring quantum wave functions. Furthermore, we obtain the classical trajectories of single photons in free space and in a harmonic trap based on the extremum of the observed propagators, thereby experimentally demonstrating the quantum principle of least action. Our work paves the way for experimentally exploring the fundamental problems of quantum theory in the formulation of path integrals. Propagators of single photons based on directly measuring quantum wave functions are experimentally observed. Classical trajectories that satisfy the principle of least action are successfully extracted in the case of free space and harmonic potential.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"17 8","pages":"717-722"},"PeriodicalIF":32.3000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Demonstration of the quantum principle of least action with single photons\",\"authors\":\"Yong-Li Wen, Yunfei Wang, Li-Man Tian, Shanchao Zhang, Jianfeng Li, Jing-Song Du, Hui Yan, Shi-Liang Zhu\",\"doi\":\"10.1038/s41566-023-01212-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principle of least action is arguably the most fundamental principle in physics as it can be used to derive the equations of motion in various branches of physics. However, this principle has not been experimentally demonstrated at the quantum level because the propagators for Feynman’s path integrals have never been observed. The propagator is a fundamental concept and contains various significant properties of a quantum system in the path integral formulation, so its experimental observation is itself essential in quantum mechanics. Here we theoretically propose and experimentally observe the propagators of single photons based on the method of directly measuring quantum wave functions. Furthermore, we obtain the classical trajectories of single photons in free space and in a harmonic trap based on the extremum of the observed propagators, thereby experimentally demonstrating the quantum principle of least action. Our work paves the way for experimentally exploring the fundamental problems of quantum theory in the formulation of path integrals. Propagators of single photons based on directly measuring quantum wave functions are experimentally observed. Classical trajectories that satisfy the principle of least action are successfully extracted in the case of free space and harmonic potential.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"17 8\",\"pages\":\"717-722\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-023-01212-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-023-01212-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Demonstration of the quantum principle of least action with single photons
The principle of least action is arguably the most fundamental principle in physics as it can be used to derive the equations of motion in various branches of physics. However, this principle has not been experimentally demonstrated at the quantum level because the propagators for Feynman’s path integrals have never been observed. The propagator is a fundamental concept and contains various significant properties of a quantum system in the path integral formulation, so its experimental observation is itself essential in quantum mechanics. Here we theoretically propose and experimentally observe the propagators of single photons based on the method of directly measuring quantum wave functions. Furthermore, we obtain the classical trajectories of single photons in free space and in a harmonic trap based on the extremum of the observed propagators, thereby experimentally demonstrating the quantum principle of least action. Our work paves the way for experimentally exploring the fundamental problems of quantum theory in the formulation of path integrals. Propagators of single photons based on directly measuring quantum wave functions are experimentally observed. Classical trajectories that satisfy the principle of least action are successfully extracted in the case of free space and harmonic potential.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.