分析具有视觉问题的图像的面部检测和识别

Verry Noval Kristanto, Imam Riadi, Yudi Prayudi
{"title":"分析具有视觉问题的图像的面部检测和识别","authors":"Verry Noval Kristanto, Imam Riadi, Yudi Prayudi","doi":"10.14421/jiska.2023.8.1.78-89","DOIUrl":null,"url":null,"abstract":"Facial recognition is a significant part of criminal investigations because it may be used to identify the offender when the criminal's face is consciously or accidentally recorded on camera or video. However, a majority of these digital photos have poor picture quality, which complicates and lengthens the process of identifying a face image. The purpose of this study is to discover and identify faces in these low-quality digital photographs using the Principal Component Analysis (PCA) and Linear  Discriminant Analysis (LDA) face identification method and the Viola-Jones face recognition method. The success percentage for the labeled face in the wild (LFW) dataset is 63.33%, whereas the success rate for face94 is 46.66%, while LDA is only a maximum of 20% on noise and brightness. One of the names and faces from the dataset is displayed by the facial recognition system. The brightness of the image, where the facial item is located, and any new objects that have entered the scene have an impact on the success rate.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisa Deteksi dan Pengenalan Wajah pada Citra dengan Permasalahan Visual\",\"authors\":\"Verry Noval Kristanto, Imam Riadi, Yudi Prayudi\",\"doi\":\"10.14421/jiska.2023.8.1.78-89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial recognition is a significant part of criminal investigations because it may be used to identify the offender when the criminal's face is consciously or accidentally recorded on camera or video. However, a majority of these digital photos have poor picture quality, which complicates and lengthens the process of identifying a face image. The purpose of this study is to discover and identify faces in these low-quality digital photographs using the Principal Component Analysis (PCA) and Linear  Discriminant Analysis (LDA) face identification method and the Viola-Jones face recognition method. The success percentage for the labeled face in the wild (LFW) dataset is 63.33%, whereas the success rate for face94 is 46.66%, while LDA is only a maximum of 20% on noise and brightness. One of the names and faces from the dataset is displayed by the facial recognition system. The brightness of the image, where the facial item is located, and any new objects that have entered the scene have an impact on the success rate.\",\"PeriodicalId\":34216,\"journal\":{\"name\":\"JISKA Jurnal Informatika Sunan Kalijaga\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JISKA Jurnal Informatika Sunan Kalijaga\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14421/jiska.2023.8.1.78-89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2023.8.1.78-89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部识别是刑事调查的重要组成部分,因为当罪犯的面部被有意或无意地记录在摄像机或视频上时,它可以用来识别罪犯。然而,这些数字照片中的大多数图片质量较差,这使识别人脸图像的过程变得复杂并延长。本研究的目的是使用主成分分析(PCA)和线性判别分析(LDA)人脸识别方法以及Viola Jones人脸识别方法来发现和识别这些低质量数字照片中的人脸。标记人脸在野外(LFW)数据集的成功率为63.33%,而人脸94的成功率是46.66%,而LDA在噪声和亮度方面的最大值仅为20%。面部识别系统显示来自数据集的姓名和面部之一。图像的亮度、面部物品的位置以及进入场景的任何新对象都会对成功率产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisa Deteksi dan Pengenalan Wajah pada Citra dengan Permasalahan Visual
Facial recognition is a significant part of criminal investigations because it may be used to identify the offender when the criminal's face is consciously or accidentally recorded on camera or video. However, a majority of these digital photos have poor picture quality, which complicates and lengthens the process of identifying a face image. The purpose of this study is to discover and identify faces in these low-quality digital photographs using the Principal Component Analysis (PCA) and Linear  Discriminant Analysis (LDA) face identification method and the Viola-Jones face recognition method. The success percentage for the labeled face in the wild (LFW) dataset is 63.33%, whereas the success rate for face94 is 46.66%, while LDA is only a maximum of 20% on noise and brightness. One of the names and faces from the dataset is displayed by the facial recognition system. The brightness of the image, where the facial item is located, and any new objects that have entered the scene have an impact on the success rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1