近红外光谱法预测薯蓣块茎的品质、结构和化学成分

IF 1.6 4区 化学 Q3 CHEMISTRY, APPLIED Journal of Near Infrared Spectroscopy Pub Date : 2021-04-13 DOI:10.1177/09670335211007575
A. E. Ehounou, D. Cornet, L. Desfontaines, Carine Marie-Magdeleine, E. Malédon, E. Nudol, G. Beurier, L. Rouan, P. Brat, M. Léchaudel, C. Noûs, A. N’guetta, A. Kouakou, G. Arnau
{"title":"近红外光谱法预测薯蓣块茎的品质、结构和化学成分","authors":"A. E. Ehounou, D. Cornet, L. Desfontaines, Carine Marie-Magdeleine, E. Malédon, E. Nudol, G. Beurier, L. Rouan, P. Brat, M. Léchaudel, C. Noûs, A. N’guetta, A. Kouakou, G. Arnau","doi":"10.1177/09670335211007575","DOIUrl":null,"url":null,"abstract":"Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.","PeriodicalId":16551,"journal":{"name":"Journal of Near Infrared Spectroscopy","volume":"29 1","pages":"128 - 139"},"PeriodicalIF":1.6000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/09670335211007575","citationCount":"2","resultStr":"{\"title\":\"Predicting quality, texture and chemical content of yam (Dioscorea alata L.) tubers using near infrared spectroscopy\",\"authors\":\"A. E. Ehounou, D. Cornet, L. Desfontaines, Carine Marie-Magdeleine, E. Malédon, E. Nudol, G. Beurier, L. Rouan, P. Brat, M. Léchaudel, C. Noûs, A. N’guetta, A. Kouakou, G. Arnau\",\"doi\":\"10.1177/09670335211007575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.\",\"PeriodicalId\":16551,\"journal\":{\"name\":\"Journal of Near Infrared Spectroscopy\",\"volume\":\"29 1\",\"pages\":\"128 - 139\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/09670335211007575\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Near Infrared Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335211007575\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Near Infrared Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335211007575","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

尽管薯蓣块茎品质性状,更确切地说是质地属性很重要,但品种选择的高通量筛选方法仍然缺乏。这项研究旨在定义优质捣碎山药的轮廓,并提供基于近红外反射光谱预测模型的筛选工具。216个研究样品中有74个被证明是可模塑的,即适合捣碎的山药。虽然具有低干物质(4%)和高蛋白质(>6%)含量、低硬度(0.5)和高内聚性(>0.5)的样品大多属于不可模塑的基因型,但事实并非如此。这种理想化学型的概要定义可以让育种家选择筛选阈值来支持他们的选择。此外,传统的近红外反射光谱定量预测模型对化学方面提供了良好的预测(R2 > 干物质、淀粉、蛋白质和糖含量为0.85),但质地属性(R2 < 0.58)。相反,卷积神经网络分类模型能够对除硬度之外的所有纹理参数进行良好的定性预测(即,成型性、内聚性、弹性和硬度的准确度分别为80%、95%、100%和55%)。这项研究证明了近红外反射光谱法作为一种高通量表型分析方法的有用性。总之,这些结果提供了一个有效的甘薯品质性状筛选工具箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting quality, texture and chemical content of yam (Dioscorea alata L.) tubers using near infrared spectroscopy
Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
35
审稿时长
6 months
期刊介绍: JNIRS — Journal of Near Infrared Spectroscopy is a peer reviewed journal, publishing original research papers, short communications, review articles and letters concerned with near infrared spectroscopy and technology, its application, new instrumentation and the use of chemometric and data handling techniques within NIR.
期刊最新文献
Non-linear machine learning coupled near infrared spectroscopy enhanced model performance and insights for coffee origin traceability Using visible and near infrared spectroscopy and machine learning for estimating total petroleum hydrocarbons in contaminated soils Detection and classification of spongy tissue disorder in mango fruit during ripening by using visible-near infrared spectroscopy and multivariate analysis A method to standardize the temperature for near infrared spectra of the indigo pigment in non-dairy cream based on symbolic regression Moisture content of Panax notoginseng taproot predicted using near infrared spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1