超级电容器电极材料NiFe2O4/少层WS2复合材料的设计与制备

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2023-09-09 DOI:10.1007/s11706-023-0656-6
Xicheng Gao, Jianqiang Bi, Lulin Xie, Chen Liu
{"title":"超级电容器电极材料NiFe2O4/少层WS2复合材料的设计与制备","authors":"Xicheng Gao,&nbsp;Jianqiang Bi,&nbsp;Lulin Xie,&nbsp;Chen Liu","doi":"10.1007/s11706-023-0656-6","DOIUrl":null,"url":null,"abstract":"<div><p>Few-layers WS<sub>2</sub> was obtained through unique chemical liquid exfoliation of commercial WS<sub>2</sub>. Results showed that after the exfoliation process, the thickness of WS<sub>2</sub> reduced significantly. Moreover, the NiFe<sub>2</sub>O<sub>4</sub> nanosheets/WS<sub>2</sub> composite was successfully synthesized through a facile hydrothermal method at 180 °C, and then proven by the analyses of field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The composite showed a high specific surface area of 86.89 m<sup>2</sup>·g<sup>−1</sup> with an average pore size of 3.13 nm. Besides, in the three-electrode electrochemical test, this composite exhibited a high specific capacitance of 878.04 F·g<sup>−1</sup> at a current density of 1 A·g<sup>−1</sup>, while in the two-electrode system, the energy density of the composite could reach 25.47 Wh·kg<sup>−1</sup> at the power density of 70 W·kg<sup>−1</sup> and maintained 13.42 Wh·kg<sup>−1</sup> at the higher power density of 7000 W·kg<sup>−1</sup>. All the excellent electrochemical performances demonstrate that the NiFe<sub>2</sub>O<sub>4</sub> nanosheets/WS<sub>2</sub> composite is an excellent candidate for supercapacitor applications.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and fabrication of NiFe2O4/few-layers WS2 composite for supercapacitor electrode material\",\"authors\":\"Xicheng Gao,&nbsp;Jianqiang Bi,&nbsp;Lulin Xie,&nbsp;Chen Liu\",\"doi\":\"10.1007/s11706-023-0656-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Few-layers WS<sub>2</sub> was obtained through unique chemical liquid exfoliation of commercial WS<sub>2</sub>. Results showed that after the exfoliation process, the thickness of WS<sub>2</sub> reduced significantly. Moreover, the NiFe<sub>2</sub>O<sub>4</sub> nanosheets/WS<sub>2</sub> composite was successfully synthesized through a facile hydrothermal method at 180 °C, and then proven by the analyses of field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The composite showed a high specific surface area of 86.89 m<sup>2</sup>·g<sup>−1</sup> with an average pore size of 3.13 nm. Besides, in the three-electrode electrochemical test, this composite exhibited a high specific capacitance of 878.04 F·g<sup>−1</sup> at a current density of 1 A·g<sup>−1</sup>, while in the two-electrode system, the energy density of the composite could reach 25.47 Wh·kg<sup>−1</sup> at the power density of 70 W·kg<sup>−1</sup> and maintained 13.42 Wh·kg<sup>−1</sup> at the higher power density of 7000 W·kg<sup>−1</sup>. All the excellent electrochemical performances demonstrate that the NiFe<sub>2</sub>O<sub>4</sub> nanosheets/WS<sub>2</sub> composite is an excellent candidate for supercapacitor applications.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-023-0656-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0656-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用独特的化学液体剥离法,制备了低层WS2。结果表明:经剥离处理后,WS2的厚度明显减小;在180℃条件下,通过水热法成功合成了NiFe2O4纳米片/WS2复合材料,并通过场发射扫描电镜、x射线衍射和x射线光电子能谱分析对其进行了验证。复合材料的比表面积为86.89 m2·g−1,平均孔径为3.13 nm。此外,在三电极电化学测试中,该复合材料在电流密度为1 a·g−1时表现出878.04 F·g−1的高比电容,而在双电极系统中,该复合材料在功率密度为70 W·kg−1时能量密度可达25.47 Wh·kg−1,在更高功率密度为7000 W·kg−1时能量密度保持在13.42 Wh·kg−1。这些优异的电化学性能表明,NiFe2O4纳米片/WS2复合材料是超级电容器的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and fabrication of NiFe2O4/few-layers WS2 composite for supercapacitor electrode material

Few-layers WS2 was obtained through unique chemical liquid exfoliation of commercial WS2. Results showed that after the exfoliation process, the thickness of WS2 reduced significantly. Moreover, the NiFe2O4 nanosheets/WS2 composite was successfully synthesized through a facile hydrothermal method at 180 °C, and then proven by the analyses of field emission scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The composite showed a high specific surface area of 86.89 m2·g−1 with an average pore size of 3.13 nm. Besides, in the three-electrode electrochemical test, this composite exhibited a high specific capacitance of 878.04 F·g−1 at a current density of 1 A·g−1, while in the two-electrode system, the energy density of the composite could reach 25.47 Wh·kg−1 at the power density of 70 W·kg−1 and maintained 13.42 Wh·kg−1 at the higher power density of 7000 W·kg−1. All the excellent electrochemical performances demonstrate that the NiFe2O4 nanosheets/WS2 composite is an excellent candidate for supercapacitor applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys Construction of a novel fluorescent nanoenzyme based on lanthanides for tumor theranostics In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1