基于数值模拟和人工神经网络的Al2O3/水纳米流体过冷流动沸腾参数化研究

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2022-07-03 DOI:10.1080/15567265.2022.2108949
H. Alimoradi, Erfan Eskandari, Mahdi Pourbagian, M. Shams
{"title":"基于数值模拟和人工神经网络的Al2O3/水纳米流体过冷流动沸腾参数化研究","authors":"H. Alimoradi, Erfan Eskandari, Mahdi Pourbagian, M. Shams","doi":"10.1080/15567265.2022.2108949","DOIUrl":null,"url":null,"abstract":"ABSTRACT Utilizing an Euler-mixture three-dimensional numerical simulation for Al2O3/water nanofluid subcooled flow boiling in a mini channel, we study the effects of pressure, heat flux, nanoparticle concentration, surface roughness, and subcooled temperature on heat transfer quantities (average and local heat transfer coefficient, average and local vapor volume fraction, and average and local wall temperature) and bubble dynamics quantities (bubble departure diameter, bubble detachment frequency, bubble detachment waiting time, and nucleation site density). The numerical results demonstrate that the nanoparticles particularly impact the bubble dynamics significantly by increasing wettability and decreasing contact angle. In order to reduce the computational burden of such an expensive multiphase flow simulation, we also present a machine learning approach based on artificial neural networks (ANN). The numerical experiments show that using the ANN model, we can achieve highly accurate results with much less computational time and resources.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"26 1","pages":"129 - 159"},"PeriodicalIF":2.7000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A parametric study of subcooled flow boiling of Al2O3/water nanofluid using numerical simulation and artificial neural networks\",\"authors\":\"H. Alimoradi, Erfan Eskandari, Mahdi Pourbagian, M. Shams\",\"doi\":\"10.1080/15567265.2022.2108949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Utilizing an Euler-mixture three-dimensional numerical simulation for Al2O3/water nanofluid subcooled flow boiling in a mini channel, we study the effects of pressure, heat flux, nanoparticle concentration, surface roughness, and subcooled temperature on heat transfer quantities (average and local heat transfer coefficient, average and local vapor volume fraction, and average and local wall temperature) and bubble dynamics quantities (bubble departure diameter, bubble detachment frequency, bubble detachment waiting time, and nucleation site density). The numerical results demonstrate that the nanoparticles particularly impact the bubble dynamics significantly by increasing wettability and decreasing contact angle. In order to reduce the computational burden of such an expensive multiphase flow simulation, we also present a machine learning approach based on artificial neural networks (ANN). The numerical experiments show that using the ANN model, we can achieve highly accurate results with much less computational time and resources.\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"26 1\",\"pages\":\"129 - 159\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2022.2108949\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2022.2108949","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 16

摘要

摘要利用Euler混合三维数值模拟Al2O3/水纳米流体在微通道中过冷沸腾,研究了压力、热通量、纳米颗粒浓度、表面粗糙度,以及过冷温度对传热量(平均和局部传热系数、平均和局部蒸汽体积分数以及平均和局部壁温)和气泡动力学量(气泡离开直径、气泡脱离频率、气泡脱离等待时间和成核位置密度)的影响。数值结果表明,纳米颗粒通过增加润湿性和减小接触角,对气泡动力学产生了特别显著的影响。为了减少这种昂贵的多相流模拟的计算负担,我们还提出了一种基于人工神经网络(ANN)的机器学习方法。数值实验表明,使用人工神经网络模型,我们可以用更少的计算时间和资源获得高精度的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A parametric study of subcooled flow boiling of Al2O3/water nanofluid using numerical simulation and artificial neural networks
ABSTRACT Utilizing an Euler-mixture three-dimensional numerical simulation for Al2O3/water nanofluid subcooled flow boiling in a mini channel, we study the effects of pressure, heat flux, nanoparticle concentration, surface roughness, and subcooled temperature on heat transfer quantities (average and local heat transfer coefficient, average and local vapor volume fraction, and average and local wall temperature) and bubble dynamics quantities (bubble departure diameter, bubble detachment frequency, bubble detachment waiting time, and nucleation site density). The numerical results demonstrate that the nanoparticles particularly impact the bubble dynamics significantly by increasing wettability and decreasing contact angle. In order to reduce the computational burden of such an expensive multiphase flow simulation, we also present a machine learning approach based on artificial neural networks (ANN). The numerical experiments show that using the ANN model, we can achieve highly accurate results with much less computational time and resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1